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Abstract
We study the Stag Hunt game where two players simultaneously decide whether to
cooperate or to choose their outside options (defect). A player’s gain from defection is
his private information (the type). The twoplayers’ types are independently drawn from
the same cumulative distribution. We focus on the case where only a small proportion
of types are dominant (higher than the value from cooperation). It is shown that for
a wide family of distribution functions, if the players interact only once, the unique
equilibriumoutcome is defection by all types of player.Whereas if a second interaction
is possible, the players will cooperate with positive probability and already in the first
period. Further restricting the family of distributions to those that are sufficiently close
to the uniform distribution, cooperation in both period with probability close to 1 is
achieved, and this is true even if the probability of a second interaction is very small.

Keywords Stag Hunt · Coordination · Private information · Repeated interaction

JEL Classification C72 · C73 · D82 · D83

1 Introduction

Two players consider a cooperation to execute a joint project. They simultaneously
decide on whether or not to cooperate. If both players cooperate, the project will be
successfully complete and eachoneof themwill obtain 1. If only one player cooperates,
he wastes his effort and receives 0. A player who decides not to cooperate (defects)
obtains a certain payoff from his outside option, which might be slightly higher if
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the other player cooperates rather than defects.1 The complete information case is a
version of the well known Stag Hunt game. If the payoffs from the outside options are
not too large, it has two pure strategy Nash equilibria: both players cooperate, or both
players defect. The former is payoff dominant, and the latter is risk dominant if their
outside options are not too small.

In the case where the values of the outside options are private information, the
payoff dominant outcome is sensitive to small perturbations. The introduction of even
small uncertainty may eliminate the cooperative outcome. For example, suppose that
each player’s payoff from the outside option is independently drawn from a uniform
distribution on [0, B], where B > 1. Namely, a positive proportion of types (the
“dominant types”) have values higher than 1, and it is their strictly dominant strategy
to defect. In this case, defection by all types of players is the unique Bayesian-Nash
equilibrium, irrespective of how small the size of dominant types is.

Intuitively, the existence of dominant types of one player induces the non-dominant
types of the other player, whose outside option is close to 1, to defect (the probability
of cooperation is less than 1 and a player with an outside option sufficiently close to 1
frombelow is better off defecting). This further induces playerswith even lower outside
options to defect. When types are drawn, for instance, from the uniform distribution,
this creates “an escalating cycle of pessimistic expectations that spiral toward the
Pareto inferior equilibrium” (see Schelling 1960; Morris and Shin 2003; and Baliga
and Sjöström 2004).

The condition on type distributions that guarantees full defection as the unique
equilibrium is typically referred to as the “multiplier condition”. It requires that for
any d ∈ (0, 1], the probability that a player is of type atmost d is smaller than d (that is,
F(d) < d). When the multiplier condition is satisfied, can the players escape the full
defection outcome?One affirmative answer is that they can through informative cheap-
talk (see Baliga and Sjöström 2004). But informative cheap-talk may not always be
implementable. It may, for instance, be prohibited by (anti-trust) law or by regulation.

In this paper, we show that even in the absence of cheap-talk, the pessimistic circle
can still be avoided, if the two players after playing the game once, may play with a
positive probability the same game once again (even if this probability is small).

In the perfect Bayesian equilibrium highlighted in this paper, a player with a type
below some threshold d∗ behaves trustingly. He cooperates in the first period and
continues to cooperate in the second period, regardless of the first period action of his
counterpart (the first period cooperation by a player serves as a signal for being a non-
dominant type, in the hope that the other player will cooperate in the second period).
A player with a type above d∗ but below 1 (non-dominant type) behaves cautiously.
He defects in the first period, and mimics the counterpart’s first period behaviour in
the second period. A player with a type above 1 (dominant type) always defects. In
this equilibrium, any type that cooperates in the first period continues to cooperate in
the second period. This by itself initiates an escalation of positive expectations.

Indeed, in this case, a player of a non-dominant type is better off cooperating in
the second period, if his counterpart cooperates in the first period. When the size of

1 The assumption that the defecting player slightly prefers his counterpart to cooperate fits an arms race
scenario, where a player who decides to build a new weapon is better off when his counterpart refrains from
doing the same (see e.g., Baliga and Sjöström 2004).
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dominant types of the two players are positive but small, a unilateral cooperation ini-
tiates with high probability a mutual cooperation in the second period. This motivates
player i with a small outside option (low type) to cooperate in the first period, even
if he believes that with probability 1 the other player j defects in this period. Since
the same argument applies to both players, j cooperates with a positive probability
already in the first period. Taking this into account, player i updates his belief on j’s
first period action, and now slightly higher types of i will also cooperate in the first
period, and so on. For the uniform distribution with a sufficiently small proportion of
dominant types, this optimistic escalation continues until almost full cooperation is
achieved in the first period.2 This is in a drastic contrast to the one-shot game, where
the unique equilibrium is defection by all types of the two players.

We show that in addition to the uniform distribution, the above observation holds
true for distributions satisfying on one hand the multiplier condition, and on the other
hand are sufficiently close to the uniform distribution. For these distributions, as the
proportion of dominant types becomes sufficiently small, (i) in the one-shot game,
full defection is the unique Bayesian-Nash equilibrium, (ii) if the players may interact
twice, with probability close to 1 cooperation can be attained already in the first period.

Let us provide some intuition on why for (ii) we need to deal with distributions
that are close to the uniform distribution. Namely, for what distributions the opti-
mistic escalation continues until 1. Suppose the escalation ends up with a first period
threshold d∗ ∈ (0, 1). Now consider Player 1 with type d1 slightly higher than d∗. If
he cooperates rather than defects, he loses d1 − F(d∗) in the first period,3 while he
gains in the second period from Player 2’s positive reaction to 1’s cooperative signal.
The first period loss d1 − F(d∗) is very close to d∗ − F(d∗), for d1 very close to d∗
from above. If F is sufficiently close to the uniform distribution, then by reducing the
proportion of dominant types, d∗ − F(d∗) approaches zero, and hence the first period
loss can also be made sufficiently small. The second period benefit, however, does not
shrink to zero as the distribution approaches the uniform distribution on [0, 1], and
hence it exceeds the first period loss. Consequently, with sufficiently small proportion
of dominant types (B ↓ 1), players with types slightly higher than d∗ cooperates. The
above argument applies to every d∗ < 1, and hence the first period cooperative thresh-
old increases to 1 as B ↓ 1. A more detailed argument is provided in the paragraphs
following Proposition4.

Related literature: It has been argued in the literature (e.g., Angeletos et al. 2007)
that when full defection is the unique equilibrium of the static game, the information
in the repeated game is revealed endogenously through the first period action and it
generates an update of priors that may admit multiple equilibria in the second stage.
This, however, can explain only the cooperations from period 2 onward. Indeed, in
Angeletos et al. (2007), when the game changes from static to dynamic, the players’
first period actions remain unchanged. This is not the case in our paper. If the players
know they may meet with positive probability for a second time, almost-full cooper-

2 For the uniform distributions over [0, B] where B > 1, we actually characterize all symmetric equilibria
of the two-period interaction game and show that except for the full defection equilibrium, all other equilibria
exhibit almost-full cooperation, and already in the first period, when B ↓ 1.
3 d1 > d∗ > F(d∗) by the multiplier condition.
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ation is achieved and already in the first period, even if the probability of a second
meeting is very small. The endogenous revelation of information through past play is
therefore not sufficient to explain our result.

Our model is closely related to the arms race model of Baliga and Sjöström (2004),
thereafter BS. Both papers study a coordination game with two-sided private informa-
tion, and show that for some distributions of types, if there is a small probability that a
player has a dominant type (prefers to defect irrespective of the other player’s action),
the unique equilibrium of the one-shot game has defecting with probability one. BS
further shows that if communication is allowed, there are cheap-talk equilibria with
informative talks that induces almost-full cooperation.

The main difference between our model and BS is the replacement of cheap-talk
with a two-period interaction. This leads to entirely different equilibrium structures. In
BS, signals are sent through costless cheap-talk. To attain a positive cooperation, the
equilibrium is necessarily “non-monotonic” in the sense that the equilibrium strategy
is defined by two or more different thresholds. BS show that if, instead, the cheap-talk
is monotonic, then full defection is the unique equilibrium outcome. In our model,
sending signals through actions is costly and such non-monotonicity does not occur.
In fact, any equilibrium strategy of our two-period game must be monotonic in the
sense that there is a threshold below which all types cooperate and above which all
types defect (see Remark1 for a detailed discussion).

Our results differ significantly from the literature on “gradualism”, which studies
how partners who are uncertain about each other’s types can achieve cooperation in
an infinitely repeated prisoner’s dilemma game (Sobel 1985; Ghosh and Ray 1996;
Watson 1999; Furusawa and Kawakami 2008). The equilibrium there has the property
of “gradual trust-building”, i.e., partners start with a low level of cooperation and
gradually increase it as the initial phases are successfully passed without defection.
Kandori (1992), Ellison (1994), Takahashi (2010) and Heller and Mohlin (2018) also
study how to sustain cooperation between partners who are engaged in an infinitely
repeated interaction. In these papers players are randomly matched with new partners
in each period. Huang (2018) studies a related model on coordination and social
learning with short-lived players.

The paper is organized as follows. Section2 presents the model and studies con-
ditions under which full defection is the unique equilibrium in the one-shot game,
while almost-full cooperation can be attained in both periods as a perfect Bayesian
equilibrium of the two period game. Section3 provides a complete analysis of the
uniform distribution case. Section4 extends the analysis to games with more than 2
periods. Conclusion and discussion are the subject of Sect. 5. Proofs are relegated to
the “Appendix”.

2 Themodel

2.1 The one-shot game

Consider the following one-shot Bayesian game. There are two players 1 and 2. Each
player has two strategies: C (cooperate) and D (defect). The actions are taken simul-
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Table 1 The payoff structure 1 2

D C

D d1, d2 d1 + μ, 0

C 0, d2 + μ 1, 1

taneously and the payoff structure is given in Table1. It is assumed that di is a private
information of player i , whereas μ ≥ 0 is commonly known. The types d1 and d2 are
independently drawn from the same distribution, with continuous cumulative distri-
bution function F . F has support [0, B] with F(0) = 0, F(d) strictly increasing for
every d ∈ (0, B), and F(B) = 1. Except for players’ realized types d1 and d2, all the
above is common knowledge.

Here di represents the payoff player i can guarantee to obtain by choosing his
outside option, irrespective of j’s action. While μ is a player’s additional satisfaction
if the other player switches from defecting to cooperate, while the player himself
defects. The case μ > 0 fits scenario like arms race, where a player who defects and
builds a superior weapon has a lead over his counterpart who acts cooperatively and
does not build a new weapon. If di > 1 − μ, defection is a strictly dominant strategy
for player i , and he defects regardless of the counterpart’s action. We therefore refer
to types above 1 − μ as “dominant types”.

A pure strategy si of player i is a Borel-measurable function si : [0, B] → {C, D}.
Namely, a choice of action for every type di of player i so that s−1

i (C) is a Borel
subset of [0, B]. The above describes a game G1(F, μ). A pair of pure strategies
s∗ = (s∗

1 , s
∗
2 ) is a Bayesian (Nash) equilibrium of G1(F, μ) iff for each di ∈ [0, B]

the action s∗
i (di )maximizes the expected payoff of player i of type di , given s∗

j , j �= i .

Let d ∈ [0, B] and let sdi be a threshold strategy. That is, for d > 0,

sdi =
⎧
⎨

⎩

C if 0 ≤ di < d
D if d < di ≤ B
∈ {C, D} if di = d,

(1)

and for d = 0,

s0i =
{
C if di = 0
D if 0 < di ≤ B.

(2)

Since player i of type di > 0 is best off defecting if the other player j chooses s0j , the

full defection strategy (s01 , s
0
2 ) is always an equilibrium of G1(F, μ), regardless of μ

and F . The next proposition characterizes all equilibria of G1(F, μ).

Proposition 1 Let F : [0, B] → [0, 1] be a continuous distribution function.
(i) Every equilibrium of G1(F, μ) consists of threshold strategies.
(ii) If B > 1−μ, then s∗ is an equilibrium of G1(F, μ) iff s∗

i = sdi , where d is a fixed
point of (1 − μ)F.

Proof See Sect.A.1 of the “Appendix”. 	
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To sharpen the difference between a one-shot interaction and a twice repeated
interaction of the players, we focus on type distributions under which full defection
is the unique equilibrium of the one-shot game. This is guaranteed by the following
multiplier condition, first proposed by Baliga and Sjöström (2004).

Definition 1 The distribution function F satisfies themultiplier condition if F(d) < d
for all d ∈ (0, 1].
If F satisfies the multiplier condition, then for any μ ≥ 0, we have (1− μ)F(d) < d
for all d ∈ (0, 1], and hence by Proposition1, full defection is the unique equilibrium
of G1(F, μ). This leads to the following corollary, which resembles Theorem 1 in
Baliga and Sjöström (2004).

Corollary 1 If F satisfies the multiplier condition, then for any μ ≥ 0, full defection
is the unique Bayesian-Nash equilibrium for G1(F, μ).

Intuitively, a dominant type of both players (types above 1 − μ) certainly defects.
Knowing that the other player defects with positive probability, a type that is “almost”
a dominant type (types lower than but close to 1−μ) also defects. This induces players
with a even lower type to defect, and so on. If (1− μ)F has a fixed point d > 0, then
the contagion stops at d. All types below d cooperate and all types above d defect.
The multiplier condition however implies that (1 − μ)F has no fixed point except 0.
Hence the contagion continues and as a result all types (except 0) defect. See Baliga
and Sjöström (2004) for a more detailed discussion on this effect.

2.2 The two-period game

In this section we analyze the two-period game G2(F, μ). The players in G2(F, μ)

play the gameG1(F, μ) twice. It is assumed that the types of the players do not change
across periods. The actions of the players are publicly observed after each period. The
payoff of player i with type di is the discounted sum of his expected payoffs in every
period. Let 0 < δ < 1 be the discount rate (δ can also be interpreted as the probability
of players meeting twice).

An action of player i in period t , t = 1, 2, is a Borel-measurable function from
[0, B] × Ht−1 to {C, D}, where Ht−1 is the set of histories up to period t − 1 with
the convention of H0 = {∅}. That is, the history at the start of the game is ∅ and it
contains no action. The set of histories after the first period is

H1 = {(C,C), (C, D), (D,C), (D, D)}.

LetH = {∅} ∪ H1. A pure strategy of player i in the two-period game is a Borel-
measurable function si ,

si : [0, B] × H → {C, D}.

A belief system of a player consists of beliefs the player has about the other player’s
type at any information set. A pair of pure strategies s∗ = (s∗

1 , s
∗
2 ) and a pair of belief
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systems b∗ = (b∗
1, b

∗
2) constitute aPerfect Bayesian Equilibrium (PBE) ofG2(F, μ) if

and only (i) for every type di ∈ [0, B] and every history h ∈ H , the strategy s∗
i (di , h)

maximizes the expected payoff of i , given his belief b∗
i , and (ii) b

∗ is computed from s∗
using Bayes’ rule wherever possible (the beliefs off-the-equilibrium can be arbitrary).
We sometimes omit the belief system if the Bayes’ rule applies everywhere.

Let γi := (d∅
i , dC,C

i , dC,D
i , dD,C

i , dD,D
i ) ∈ R

5+, i = 1, 2. Every γi defines a thresh-
old strategy si of i by

si (di , h) = C iff 0 ≤ di ≤ dhi , h ∈ H . (3)

Like the one-shot game, full defection in both periods is an equilibrium outcome of
G2(F, μ) for all distribution functions F on [0, B]. Nevertheless, this equilibrium
is always interim Pareto dominated by all other equilibria (i.e., not only the ex-ante
payoff of full defection is lower, any type is doing worse in full defection than in
any other equilibrium). The next proposition asserts that all equilibrium strategies of
G2(F, μ) are threshold strategies.

Proposition 2 Let F : [0, B] → [0, 1], B > 1 − μ, be a continuous and strictly
increasing distribution function. Let s∗ = (s∗

1 , s
∗
2 ) be an equilibrium of G2(F, μ).

Then s∗
1 and s∗

2 are threshold strategies.

Proof See Sect.A.2 of the “Appendix”. 	

By Proposition2, we only consider threshold strategies as candidates for equi-

librium. The next proposition focuses on games under which full defection is the
unique equilibrium of the one-shot game, and shows that for sufficiently small μ, the
two-period game G2(F, μ) has a PBE where both players cooperate with positive
probability in both periods.

Proposition 3 Let F : [0, B] → [0, 1] be a continuous and strictly increasing distri-
bution function. Suppose B > 1 and the multiplier condition is satisfied. Then there
exists μ̂ > 0 such that for every μ ∈ [0, μ̂), the game G2(F, μ) has a PBE with
d∗ > 0 such that a player cooperates in the first period iff his type does not exceed d∗.
Moreover, a player with type below d∗ continues to cooperate in the second period,
regardless of the other player’s first period action.

Proof See Sect.A.3 of the “Appendix”. 	

If the multiplier condition is satisfied, then full defection is the unique equilibrium

of the one-shot game G1(F, μ) for every μ ≥ 0 (see Corollary1). Proposition3 states
that cooperation inG2(F, μ) can be achieved with positive probability under the same
condition.

It is shown in “AppendixA.3” that under the conditions of Proposition3, the follow-
ing pair of strategies s∗ = (s∗

1 , s
∗
2 ) is an equilibrium of G2(F, μ), if μ is sufficiently

small.

s∗
1 = (d∅

1 = d∗, dC,D
1 = m∗, dC,C

1 = dD,C
1 = 1 − μ and dD,D

1 = 0), (4)
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s∗
2 = (d∅

2 = d∗, dD,C
2 = m∗, dC,C

2 = dC,D
2 = 1 − μ and dD,D

2 = 0), (5)

where d∗ < m∗ < 1 − μ. The first-period threshold d∗ is a solution d in (0, 1 − μ)

to4

d = (1 − δ − μ)F(d) + δF(1 − μ)

1 + δ − δF(d)
, (6)

and m∗ is defined by

m∗ := (1 − μ) · F(1 − μ) − F(d∗)
1 − F(d∗)

. (7)

In equilibrium s∗, player i who cooperates in the first period is of type di , di ≤
d∗ < m∗, and hence he continues to cooperate in the second period, regardless of
the other player’s first period action.5 The first period cooperation is a credible signal
of player i’s (non-dominant) type, and it induces all non-dominant types of the other
player j to cooperate in the second period, and irrespective of player j’s first-period
action. Consequently, under s∗, both players cooperate in the second period unless
both of them defect in the first period.

For our next result, let F1 be a distribution function on [0, 1], and let F (F1) be
the set of all distribution functions FB , which is obtained by rescaling the units of F1.
Formally, FB ∈ F (F1) if and only if FB(x) = F1(

x
B ) for every x ∈ [0, B]. For B > 1,

the larger B is, the higher is the proportion of dominant types (types d ∈ [1− μ, B]).
Definition 2 Let G1 be the set of all continuous and strictly increasing distribution
functions F1 : [0, 1] → [0, 1] such that F1(d) ≤ d for all d ∈ [0, 1].

Let F1 ∈ G1. Then F1 first-order stochastically dominates (FOSD) the uniform
distribution on [0, 1]. If FB ∈ F (F1) and B > 1, then the multiplier condition
FB(d) < d, d ∈ (0, 1] is satisfied and Proposition3 applies. The next proposition
offers sufficient conditions for d∗ in s∗ to be sufficiently close to 1 (that is, almost-full
cooperation is attained in s∗ in both periods).

Proposition 4 Let δ ∈ (0, 1). Suppose

(i)F1 ∈ G1, and

(ii) there exists x̂ ∈ [0, 1) s.t. F1(x) >

R(x):=
︷ ︸︸ ︷

max

(

0,
x − δ(1 − x)

1 − δ(1 − x)

)

for all x ∈ (̂x, 1).

(8)

Then for every ε > 0, there exists μ′ > 0 and η > 0 such that for every μ ∈ [0, μ′),
B ∈ (1, 1 + η), and FB ∈ F (F1) the following holds:

4 Equation (6) can have multiple solutions of d in (0, 1 − μ). If μ = 0, the first period threshold d∗ can
take the value of any solution (in particular, the maximal one). If μ > 0, then the selection of the solutions
is more complicated, and the detail is provided in “AppendixA.3”.
5 Note that dC,D

1 = m∗ is a second period threshold for cooperation after (C, D) whether or not Player 1
follows s∗ in the first period. Player 1 of type d1 ∈ (d∗,m∗] should defect in period 1 according to s∗, but
off-equilibrium if he cooperates in the first period, he is best off cooperating also in the second period.
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Fig. 1 Functions that (don’t) satisfy Proposition4 (δ = 0.9)

(i) The full defection equilibrium is the unique equilibrium of the one-shot game
G1(FB, μ).

(ii) In the two-period game G2(FB, μ), s∗ defined in (4)–(5) is a PBE and d∗ ∈
(1 − ε, 1 − μ).

Proof See Sect.A.4 of the “Appendix”. 	

Proposition4 provides a class of distributions F1 that FOSD the uniformdistribution

(F1 ∈ G1) and is sufficiently close to the uniformdistribution for high types (see (8) and
Fig. 1). Let F1 be in this class. If FB , a re-scaling of F1, has a positive, but sufficiently
small proportion of types above 1 (i.e., if B ↓ 1), and if μ is sufficiently small, then by
Proposition4, while full defection is the unique equilibrium ofG1(FB, μ), almost-full
cooperation in both periods is attained as a PBE of G2(FB, μ). We next provide some
intuition for this result.

According to the equilibrium s∗, a player who cooperates in the first period contin-
ues to cooperate in the second period. Hence, a player of a non-dominant type is better
off cooperating in the second period if his counterpart cooperates in the first period.
Taking this into account, a player with a sufficiently low outside option prefers to
cooperate in the first period, even if he believes that in this period his counterpart will
not cooperate. Therefore, both players assign a positive probability to the event that
their counterparts will cooperate already in the first period. Taking this into account,
players with a slightly higher outside option will also cooperate in the first period, and
so on.

This escalation of positive expectations continues until some cut-off type d∗ ∈
(0, 1 − μ). Below d∗ all types cooperate and above d∗ all types defect. Suppose the
type distribution is sufficiently close to the uniform distribution (condition (8)), then
the contagion continues all the way to 1 as B ↓ 1. We next elaborate on why we need
for this result condition (8) on type distributions. For simplicity let μ = 0 and let us
deal with distribution functions that satisfy (8) for x̂ = 0 (see Fig. 1a).

In s∗, a player signals that he is a non-dominant type by cooperating in the first
period. The signalling cost of the cut-off type d∗ is d∗ − F(d∗). Given that F is
close to the uniform distribution on [0, 1], the cut-off type’s signalling cost is close
to zero, regardless of the value of d∗. The benefit of a first period cooperation, on the
other hand, comes from changing the second-period outcome from (D, D) to (C,C)
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against medium type counterpart (types above d∗ and below 1). As the distribution
becomes sufficiently close to the uniform distribution on [0, 1], this benefit approaches
δ · (1− F(d∗)

) · (1− d∗), which is strictly positive. Therefore, for any fixed d∗ < 1,
when F becomes sufficiently close to the uniform distribution on [0, 1], the benefit of
cooperation for type d∗ exceeds the cost, and hence the positive escalation continuous.
Consequently, when F is everywhere close to the uniform distribution, the first period
threshold d∗ approaches 1 as the proportion of dominant types shrinks to zero, and
hence almost full cooperation is attained.

The above intuition applies to distributions F that are everywhere close to the
uniform distribution (see Fig. 1a). If, instead, the distribution F is close to the uniform
distribution only for high types, that is, (8) holds but only for x̂ > 0 (see Fig. 1b), then
F1(x) = R(x) has multiple solutions , and the intuition is more complicated. In this
case, it can be verified that if both players start with a belief that their counterparts
cooperate with probability 0 in the first period, the escalation of positive expectations
while leads to a positive cooperation, it is bounded away from 1, as B ↓ 1. The positive
escalation continues until 1 only if players start with a belief that their counterparts
cooperate with a probability at least FB (̂x).

Remark 1 Analogous to our Proposition4, Baliga and Sjöström (2004) show that when
the multiplier condition is satisfied, there exists a cheap-talk equilibrium under which
almost full cooperation can be attained when the proportion of dominant types is
sufficiently small. For their result, unlike ours, no additional conditions on type dis-
tributions is required. This difference stems from the different ways players “signal”
their types in the two models.

In Baliga and Sjöström (2004), to attain a positive cooperation, the equilibrium is
necessarily “non-monotonic” in the sense that there exists 0 < d1 < d2 < 1 − μ

such that the normal types (d ∈ [0, d1]) and very high types (d ∈ [d2, 1 − μ])
pool together by sending the “Dove” signal, and the fairly high types (d ∈ (d1, d2))
separate out by sending the “Hawk” signal. If both players say Dove, then the normal
type cooperates, and the very high type defects. It is shown that if the share of dominant
types shrinks to 0, the equilibrium share of the normal types approaches 1, and almost
full cooperation is attained. In this construction, conditional on a Dove signal, the
cumulative distribution function has a flat part on the interval of fairly high types.
As long as the flat part crosses the diagonal line, the multiplier condition is violated,
and positive cooperation can be supported. As μ approaches 0 and B approaches 1
from above, the probability of a dominant type approaches 0 and the flat part can be
made arbitrarily short. This yields almost full cooperation. The non-monotonicity in
cheap-talk is essential to attain a cooperative outcome. Baliga and Sjöström (2004)
show that if, instead, the cheap-talk is monotonic, then full defection is the unique
equilibrium outcome.

In our paper, in the absence of cheap-talk, players signal their non-dominant types
through cooperative actions, which is costly for high type players. Consequently, the
equilibrium strategy is necessarily monotonic in the sense that there is a threshold d∗
below which all types cooperate and above which all types defect (see Proposition2).
As argued before, to support an equilibriumwhere the first period threshold d∗ is high,
for high type players (types close to d∗ from below), his loss from being cooperative
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(close to d∗ − F(d∗)) has to be sufficiently small to be compensated by the gain from
the counterpart’s positive second period reaction to the cooperative signal. This is
guaranteed by the conditions that F is sufficiently close to the uniform distribution on
[0, 1].
Remark 2 While both small μ and small B guarantee that the share of dominant types
1 − F(1 − μ) is small, the value of μ plays an additional role. It is also the size of
a player’s additional satisfaction when the other player switches from defecting to
cooperating, given that the player himself defects. In Proposition3, to support s∗ as
an equilibrium, given the share of dominant types, the value μ has to be sufficiently
small.6 In s∗ after the history (C, D), Player 1 who cooperates in period 1 knows that
a non-dominant type of Player 2 will cooperate in the second period. If the proportion
of dominant types is small, and in addition, μ is small, Player 1 too is better off
cooperating again. However, given the same proportion of dominant types, if μ is
sufficiently large, given the history (C, D), knowing that with high probability Player
2 will cooperate in the second period, Player 1 has a strong incentive to defect, in
which case he enjoys both his outside option and a significant satisfaction from the
cooperation attempt of Player 2. This incentive, if strong, can break the equilibrium
s∗.

Remark 3 The role of δ in supporting an equilibrium with cooperation is not straight-
forward. On one hand, if μ can be made arbitrarily small, in particular if μ = 0, then
a larger δ implies a less restrictive condition (8),7 which further implies a larger class
of distribution functions that support an almost-full cooperation. However, if μ > 0
is fixed, then a larger δ may hurt cooperation.

Note first that the first period threshold d∗ of s∗ is increasing in δ. Indeed, by
cooperating rather than defecting in period 1, a player i of a relatively high type
sacrifices the period 1 payoff to induce player j to cooperate in the second period.
When δ increases, the benefit from the second period payoff accounts for a larger
weight and hence a player with a higher outside option is willing to cooperate in the
first period. Whenμ = 0, high type players who cooperate in the first period are better
off continue cooperating in the second period, and hence an equilibrium of the form
s∗ can be supported. However, when μ > 0 is fixed, following the defection of player
j in the first period, cooperating in the second period may no longer be beneficial for
high types of i . As an example, suppose F(x) = x

1.02 , and μ = 0.44. It can be verified
that s∗ described in (4)–(5) is an equilibrium if δ = 0.7, but it is not an equilibrium if
δ = 0.9.

We next illustrate our results with uniform distributions and with μ = 0. Under
the uniform distribution, condition (8) is satisfied for all δ ∈ (0, 1).8 That is, as long

6 Consider the following two games, where δ = 0.9. In the first game F1(x) = x
1.2 and μ1 = 0.35, and in

the second game F2(x) = x
1.02 and μ2 = 0.4475. It can be verified that the share of dominant types in the

two games are the same 1− F1(1−μ1) = 1− F2(1−μ2), while s∗ described in (4)–(5) is an equilibrium
in the first game, but not in the second one.
7 The uniform distribution on [0, 1] is an exception since condition (8) holds for all δ ∈ (0, 1) (see Sect. 3).
8 In fact, this is true not only for uniform distribution, but also for any distribution F1 ∈ G1 that coincides
with the uniform distribution on [̂x, 1], for some x̂ ∈ (0, 1).
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Table 2 The payoff structure for
μ = 0

1 2

D C

D d1, d2 d1, 0

C 0, d2 1, 1

as there is a positive (even if arbitrarily small) probability for a second interaction,
almost full cooperation is attained when B is sufficiently close to 1 (from above).

3 Example: uniform distribution and � = 0

In this section, we focus on the uniform distribution Fu
B = x

B on [0, B] and assume
μ = 0. In addition to illustrating previous results,we show that except the full defection
equilibrium, all symmetric PBEs (one of them is s∗) satisfy the property that almost-
full cooperation is attained as B ↓ 1.

Consider the gameG1(Fu
B) := G1(Fu

B, μ = 0), where B > 1. The payoff structure
is given in Table2, which is Table1 for μ = 0.

By Corollary1, full defection is the unique equilibrium in G1(Fu
B). We next turn to

the twice repeated game G2(Fu
B) := G2(Fu

B, μ = 0). By the proof of Proposition3,
the following strategy profile s∗ is an equilibrium. Since players are symmetric, we
describe only Player 1’s strategy. Let duB be the unique solution9 in (0, 1) to (6), and
let duB and mu

B be defined as in (7). Then mu
B > duB .

• In the first period, Player 1 of type d1 cooperates iff d1 ≤ duB .• As for the second-period action, if the first-period action is

– (C,C), Player 1 cooperates iff d1 ≤ 1.
– (C, D), Player 1 cooperates iff d1 ≤ mu

B .
– (D,C), Player 1 cooperates iff d1 ≤ 1.
– (D, D), Player 1 defects irrespective of his type.

Since duB < min(mu
B, 1), if player i follows s∗

i and chooses C in the first period, he
must be of type di ≤ duB and he continues to cooperate in the second period, regardless
of the other player’s first-period action.

Note that duB is increasing to 1 as B ↓ 1, regardless of δ. Interpreting δ as the
probability of having a second interaction, regardless of how small this probability
is, almost-full cooperation is achieved in both periods if the proportion of dominant
types is sufficiently small. Figure2 illustrates the increase in cooperation level in the
two period game when δ is small (δ = 0.1).

The above conclusion applies to the specific equilibrium s∗ in G2(Fu
B). The next

proposition shows that the same is true for all symmetric equilibria in G2(Fu
B), except

for the full-defection equilibrium.

9 It can be easily verified that duB = δ B+B+δ−1−√
(δ+1)[(B+3)δ+B−1](B−1)

2δ .
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Fig. 2 Cooperation in G2(F
u
B ) (δ = 0.1)

Proposition 5 Let δ ∈ (0, 1). For every ε > 0, there exists η > 0 such that if
B ∈ (1, 1 + η), (i) full defection is the unique equilibrium of G1(Fu

B), and (ii) in
every symmetric equilibrium of G2(Fu

B) other than the full-defection equilibrium, the
players’ first-period cooperation threshold d∅ > 1 − ε.

Proof See Sect.A.5 of the “Appendix”.

As shown in Lemma3 in “AppendixA.5”, for B ∈ (1, 1 + δ), except for the full-
defection equilibrium, the symmetric PBE of G2(Fu

B) must be one of the following
three forms. Since players are symmetric, we only provide the strategies for Player 1.

(a) d∅
1 > 0, dC,C

1 = 1, and dX ,Y
1 = 0 for all (X ,Y ) �= (C,C).

(b) d∅
1 > 0, dC,C

1 = 1, dC,D
1 = (1+δ−B)d∅

δ
, dD,C

1 = 1+δ−B
δ

, dD,D
i = 0.

(c) d∅
1 > 0, dC,C

1 = 1, dC,D
1 = m∗ > d∗, dD,C

1 = 1 and dD,D
1 = 0. This is s∗ defined

in (4).

In these three equilibrium points, each player cooperates in the first period with
a positive probability, and if both players cooperate (resp. defect) in period 1, they
continue to cooperate (resp. defect) in period 2. The only difference lies on a players’
action following amiscoordination in period 1. If in the first period Player 1 cooperates
while his counterpart defects, then in the second period, Player 1 defects in equilibrium
(a); he defects only with some probability in equilibrium (b); and he continues to
cooperate in equilibrium (c).

Remark 4 For the uniform distribution, as shown in Proposition5, as B ↓ 1, all three
symmetric equilibria (a)–(c) achieve cooperation with probability close to 1 (d∅

1 ↑ 1)
and already in the first period. This, however, is not true for general distribution
functions.
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Example: Suppose δ = 0.9, F1 =
√
x

2−x , and FB(x) = F1(
x
B ) for B > 1. It can

be verified that when players’ type distributions follow FB , both types of equilibrium
points (a) and (c) exist. For equilibrium (a), as B ↓ 1, the first period threshold d∅

1
approaches 1, but for equilibrium (c), d∅

1 is bounded away from 1.10

In all three types of equilibrium (a)–(c), a player’s first period cooperation induces
(in one way or another) the other player to cooperate in the second period. The esca-
lation of positive expectations induces more types of players to cooperate already in
the first period. To guarantee that the positive escalation continues until 1 as B ↓ 1, it
is further required that the players’ type distribution functions to be sufficiently close
to the uniform distribution. The intuition for this additional requirement is provided
in Sect. 2.2 for equilibrium of type (c), and it also applies to other types of equilib-
rium.Nevertheless, since different types of equilibrium induce cooperation in different
manners, the exact condition varies. In the above example, the distribution function

F1 =
√
x

2−x satisfies the corresponding requirement for type (a) equilibrium (so that
the first period threshold for this type of equilibrium approaches 1 as B ↓ 1), but it
violates that of type (c) equilibrium (so that the first period threshold for this type of
equilibrium is bounded away from 1).

4 The T-period gamewith � = 0

In this section we extend the two-period game to any T ≥ 2 period game, but for
simplicity only under the assumption that μ = 0. We show that Proposition4 remains
essentially the same when players interact for more than two periods, and, not surpris-
ingly, it holds for a less restrictive class of distribution functions.

Suppose the distribution of players’ types is given by FB : [0, B] → [0, 1], where
B > 1. Let T ≥ 3. In the game GT (FB) := GT (FB, μ = 0), the players play
the game G1(FB, μ = 0) (see Table2) T times. The types of players do not change
across periods. The payoff of a player is the discounted sum of his per period expected
payoffs. Players of all types have the same discount factor δ ∈ (0, 1). The actions of
the players are publicly observed after each period.

Consider the following strategy profile s∗
T of GT (FB), where the players in the first

two periods act as in s∗ of G2(FB) (given by (4) and (5)). Namely,

• In periods t = 1, 2:

s∗
T1 = (d∅

1 = d∗
T , dC,D

1 = m∗
T , dC,C

1 = dD,C
1 = 1 and dD,D

1 = 0), (9)

s∗
T 2 = (d∅

2 = d∗
T , dD,C

2 = m∗
T , dC,C

2 = dC,D
2 = 1 and dD,D

2 = 0), (10)

where m∗
T > d∗

T are given in (12) and (13) below.
• If T ≥ 3, in periods 3 ≤ t ≤ T :

10 Note that F1 violates condition (8) of Proposition4. It is left open the question whether the conditions
of Proposition4 guarantee that except for the full defection equilibrium, in every PBE (and not only the
equilibrium s∗ described in (4)–(5)) almost full cooperation is achieved in both periods, as B ↓ 1.
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– If the second-period pair of actions is (C,C), players of typed ≤ 1 cooperate in
every period t , and players with type d > 1 defect in every period t , 3 ≤ t ≤ T .

– Otherwise, the players defect in every period t, 3 ≤ t ≤ T , irrespective of
their types.

In s∗
T , players with types d ≤ d∗

T cooperate in the first period. In the second period,
a player of type d ≤ d∗

T continues to cooperate, regardless of the other player’s first-
period action; and a player with type d ∈ (d∗

T , 1] cooperates if and only if the other
player cooperates in the first period. For T ≥ 3, and for every t , 3 ≤ t ≤ T , if
both players cooperate in the second period, they continue to cooperate in period t .
Otherwise, both players defect in period t . Note that in s∗

T , if player i cooperates in
the first two periods while player j defects in these periods, then i knows that j has a
dominant type (d j > 1) and i is best off choosing D.

Let b∗
T be the belief system that is computed from s∗

T using Bayes’ rule wherever
possible, and at each information set of player i that is reached with probability zero,
player i believes that player j is of type d j > 1 (a dominant-type). In “AppendixA.6”
we show that the strategy profile s∗

T with the belief system b∗
T constitute a PBE of

GT (FB). Let

� :=
{∑T−1

t=2 δt if T ≥ 3
0 if T = 2.

(11)

The first period threshold d∗
T is the maximal solution in (0, 1) to

d∗
T = FB(d∗

T ) + δ · (FB(1) − FB(d∗
T )) + � · (FB(1) − FB(d∗

T ))

1 + δ(1 − FB(d∗
T )) + � · (FB(1) − FB(d∗

T ))
, (12)

and m∗
T is

m∗
T := δ · (FB(1) − FB(d∗

T )) + � · (FB(1) − FB(d∗
T ))

δ(1 − FB(d∗
T )) + � · (FB(1) − FB(d∗

T ))
. (13)

Next, similar to Proposition4,we provide a family of distributions on [0, B], B > 1,
for which full defection is the unique equilibrium of G1(FB), almost-full cooperation
is attained by s∗

T in GT (FB), in all periods. That is, d∗
T is increasing to 1, as B ↓ 1.

Proposition 6 Let T ≥ 2 and δ ∈ (0, 1). Suppose F1 ∈ G1, and

there exists x̂ ∈ (0, 1) s.t. F1(x) >

RT (x)
︷ ︸︸ ︷
x − (δ + �)(1 − x)

1 − (δ + �)(1 − x)
for all x ∈ (̂x, 1). (14)

Then for every ε > 0, there exists η > 0 such that for every B ∈ (1, 1 + η), and
FB ∈ F (F1),

(i) The full defection equilibrium is the unique equilibrium of the one-shot game
G1(FB, μ = 0).

(ii) The T -period game GT (FB, μ = 0) has a PBE s∗
T defined in (12)–(13) where

d∗
T ∈ (1 − ε, 1).

(iii) RT (x) is decreasing in T for every x ∈ (̂x, 1).
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Fig. 3 The functions R2(x), R5(x), and R∞(x) for δ = 0.9

Proof See Sect.A.6 of the “Appendix”. 	


Proposition6 states that, similar to Proposition4, for every F1 in a restrictive class
of distributions on [0, 1] and for FB ∈ F (F1), B > 1, the T -period game GT (FB),
T ≥ 2, has a PBE where almost-full cooperation can be attained in each one of the T
periods, if B approaches 1. In contrast, full defection is the unique equilibrium of the
one-shot game G1(FB).

Note that condition (14) is less restrictive than (8) since RT (x) is decreasing in T .
Hence the sufficient condition (14) allows for larger class of distribution functions as
the number of interactions increases. For δ = 0.9, the functions R2(x), R5(x), and
R∞(x) are shown in Fig. 3.

5 Conclusion and future work

This paper studies a Stag Hunt game where players’ payoffs from non-cooperation
are their private information. For a class of distribution functions, which includes the
uniform distribution, if there is only a small but positive probability that each player
has a dominant type (that is, he is better off not cooperating, regardless of the action of
the other player), non-cooperation by all types is the only equilibrium of the one-shot
game. It is shown that this disappointing outcome may drastically change if there is a
positive probability that the two players meet once more. In this case, if the proportion
of dominant types is sufficiently small, almost-full cooperation is achieved in both
periods, even if the probability of meeting for a second time is very small.

One corollary of this paper is that there are simple circumstances where limiting
players to only one interaction results in a failure to cooperate, even though cooperation
is more likely preferred by both of them. Leaving the door open for just one more
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interaction (even if its likelihood is small) may drastically change the outcome: with
high probability the two players will cooperate in both periods.

In this paper, we assume that the players have identical distributions over types. One
possible extension is to non-symmetric type distributions. Suppose that irrespective of
his type, player i believes that the types of the other player j are distributed according
to a distribution function Fj : [0, Bj ] → [0, 1]. An example is an R&D cooperation
between two competing firms: one “large” and the other one “small”. By a “large firm”
we refer to a firm that is more likely to have a better outside option. It can be shown
that if max(B1, B2) > 1− μ, then the strategy profile s∗ = (s∗

1 , s
∗
2 ) is an equilibrium

of the one-shot game if and only if s∗
i = sd̂ii , i = 1, 2, where

(d̂1, d̂2) ∈ {(d1, d2)|d1 = (1 − μ)F2(d2) and d2 = (1 − μ)F1(d1)}.

The analysis of the multi-period game with non-symmetric players is challenging.
Another extension is to the case where μ < 0 (see Table1). The case μ > 0

fits scenarios where two enemies are engaged in arms race, while the case μ < 0 is
relevant to two friends rather than two enemies that are engaged in a joint project.
Each feels guilty for not cooperating if his friend chooses to cooperate. In this case,
suppose the players’ type distributions follow the uniform distribution on [0, B]. If B
is sufficiently large (B > 1 + |μ|), then despite the players’ inclination to cooperate,
full defection is the unique equilibrium in the one-shot game. While in the two period
game, the cooperative strategy s∗ described in (4)–(5) remains an equilibrium if |μ|
is sufficiently small. Moreover, the first period threshold of s∗ approaches 1 as B ↓ 1
and μ ↓ 0. The characterization of the set of distribution functions (other than the
uniform one) for which this result holds, remains open.
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A Appendix

A.1 Proof of Proposition 1

For any pair of pure strategies (s1, s2), let

Ti = Ti (si ) = {di ∈ [0, B]|si (di ) = C}.

That is, Ti is the (Borel) set of all types of player i who cooperate under si . Since C is
a weakly dominant strategy for i of type di = 0 it is assumed that 0 ∈ Ti , and hence
Ti �= ∅. Let λ be the measure on [0, B] generated by the distribution function F . The
measure of Ti is therefore λ(Ti ).

If player i of type di ≤ 1−μ choosesC , his expected payoff is λ(Tj ). If he chooses
D he obtains di

(
1 − λ(Tj )

) + (di + μ)λ(Tj ) = di + μλ(Tj ). Hence di ∈ Ti implies
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di ≤ (1 − μ)λ(Tj ), j �= i , and di /∈ Ti implies di ≥ (1 − μ)λ(Tj ). Consequently, in
equilibrium, both T1 and T2 are intervals starting from zero. Part (i) of Proposition1
follows. We next turn to proof part (ii).

Suppose B > 1 − μ. Let s∗ = (s∗
1 , s

∗
2 ) be an equilibrium of G1(F, μ). By part

(i), both s∗
1 and s∗

2 are threshold strategies. For i = 1, 2, denote by d̂i the threshold
in s∗

i . As argued above, player i chooses C only if di ≤ (1 − μ)λ(Tj ). Therefore,
d̂i = min[B, (1− μ)λ(Tj )] = min[B, (1− μ)F(d̂ j )]. Since B > 1− μ, we have for
all i = 1, 2 and j �= i ,

d̂i = (1 − μ)F(d̂ j ). (15)

Suppose w.l.o.g. d̂i ≥ d̂ j . Then

d̂i = (1 − μ)F(d̂ j ) ≤ (1 − μ)F(d̂i ) = d̂ j ,

and hence d̂i = d̂ j . Therefore, when s∗ is an equilibrium, the threshold in s∗
i satisfies

d̂i = (1 − μ)F(d̂i ).
We next verify that as long as d̂ is a fixed point of F , the strategy profile (sd̂1 , sd̂2 )

is an equilibrium of G1(F, μ).
Suppose Player 1 plays sd̂1 . Let us show that sd̂2 is best reply to sd̂1 . If d2 chooses

C he obtains F(d̂), otherwise, he obtains d2 + μF(d̂). Hence d2 prefers C iff d2 ≤
(1 − μ)F(d̂) = d̂ . This completes the proof of part (ii) in Proposition1.

A.2 Proof of Proposition 2

Similar to Proposition1, it can be verified that the second-period choice of each player
is determined by thresholds. Namely, s∗

i (di , h1), h1 ∈ H1 is defined by (3) for some

threshold dh
1

i .We need to prove that this is also true for the first-period choice, namely,
(3) also holds for h = ∅.

Let X ∈ {C, D}. Denote

E∅
2 = {d2 ∈ [0, B]|s∗

2 (d2,∅) = C},
E

∅
2 = [0, B] \ E∅

2 ,

EC,X
2 = [0, dC,X

2 ] and ED,X
2 = [0, dD,X

2 ],
P∅
2 = ProbE∅

2 .

Suppose Player 1 of type d1 chooses C in the first period. He obtains an expected
payoff of U1(d1,C), where

U1(d1,C) = P∅
2 + δP∅

2

{
Prob(EC,C

2 |E∅
2 ) d1 ≤ dC,C

1
d1 + μ · Prob(EC,C

2 |E∅
2 ) d1 > dC,C

1
+

+ (1 − P∅
2 ) · 0 + δ(1 − P∅

2 )

{
Prob(EC,D

2 |E∅
2) d1 ≤ dC,D

1

d1 + μ · Prob(EC,D
2 |E∅

2) d1 > dC,D
1 .

123

Author's personal copy



Stag Hunt with unknown outside options

Observe that if Player 2 chooses C in the first period then the updated probability
distribution of Player 1 about Player 2’s type changes from F2(d2) to F2(d2|d2 ∈
E∅
2 ). If Player 2 chooses D in the first period the updated distribution of Player 1 is

F2(d2|d2 ∈ E
∅
2). Since B > 1 − μ, the second-period thresholds satisfy dh

1

1 < B for
all h1 ∈ H1. By Proposition1 for X ∈ {C, D},

(1 − μ) · Prob(EX ,C
2 |E∅

2 ) = dX ,C
1 (16)

and
(1 − μ) · Prob(EX ,D

2 |E∅
2) = dX ,D

1 . (17)

By (16) and (17)

U1(d1,C) = P∅
2 + δP∅

2

{
1

1−μ
· dC,C

1 d1 ≤ dC,C
1

d1 + μ
1−μ

· dC,C
1 d1 > dC,C

1

+ δ(1 − P∅
2 )

{
1

1−μ
· dC,D

1 d1 ≤ dC,D
1

d1 + μ
1−μ

· dC,D
1 d1 > dC,D

1 .
(18)

By (18),U1(d1,C) is continuous in d1 (as a sum of two continuous functions) and it is
piecewise linear in d1. Moreover, the slope of U1(d1,C) with respect to d1 is at most
δ.

Similarly, if Player 1 chooses D in the first period, he obtains

U1(d1, D) = p∅
2 · (d1 + μ) + δP∅

2

{
Prob(ED,C

2 |E∅
2 ) d1 ≤ dD,C

1
d1 + μ · Prob(ED,C

2 |E∅
2 ) d1 > dD,C

1

+ (1 − p∅
2 ) · d1 + δ(1 − P∅

2 )

{
Prob(ED,D

2 |E∅
2) d1 ≤ dD,D

1

d1 + μ · Prob(ED,D
2 |E∅

2) d1 > dD,D
1 .

Hence

U1(d1, D) = p∅
2 · (d1 + μ) + δP∅

2

{
1

1−μ
· dD,C

1 d1 ≤ dD,C
1

d1 + μ
1−μ

· dD,C
1 d1 > dD,C

1

+ (1 − p∅
2 ) · d1 + δ(1 − P∅

2 )

{
1

1−μ
· dD,D

1 d1 ≤ dD,D
1

d1 + μ
1−μ

dD,D
1 d1 > dD,D

1 .
(19)

The payoffU1(d1, D) is also continuous and piecewise linear in d1, and its slope is at
least 1. Since δ < 1, it is easy to verify that U1(d1,C) − U1(d1, D) is continuous in
d1 and has a negative slope everywhere in [0, B]. Namely, it is decreasing everywhere
in [0, B] and if U1(d1,C) ≥ U1(d1, D) for some d1, it certainly holds for any type
below d1. This implies that s∗

1 (d1,∅) is a threshold strategy and d∅
1 is the (unique)

solution of U1(d,C) = U1(d, D) in d, if a solution exists. If U1(d1,C) < U1(d1, D)

for all d1 ∈ (0, B], then d∅
1 = 0 and if U1(d1,C) > U1(d1, D) for all d1 ∈ (0, B]

then d∅
1 = B.
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A.3 Proof of Proposition 3

Since the game is symmetric and the strategy s∗ described in (4)–(5) is symmetric, to
show that s∗ is an equilibrium, it is sufficient to show that s∗

1 is a best response to s∗
2 .

There are two key steps: (1) there exists some d∗ ∈ (0, 1 − μ) such that it is optimal
for Player 1 to cooperate in the first period if and only if d1 ≤ d∗, and (2) after Player
1 cooperated and his counterpart defected in period 1, Player 1 of type d1 ≤ d∗ strictly
prefers to continue cooperating.

By defecting rather than cooperating in period 1, Player 1 of type d1 gains the value
of his outside option d1, but loses 1−μ if his counterpart chooses to cooperate, which
happens if his counterpart is of type d2 ≤ d∗. Therefore, by defecting rather than
cooperating in period 1, the payoff of Player 1 of type d1 changes by

d1 − F(d∗) · (1 − μ) (20)

Suppose the counterpart has cooperated in period 1, then the counterpart will con-
tinue cooperating in period 2 and andPlayer 1 of any non-dominant typewill cooperate,
regardless of Player 1’s period 1 action. So Player 1’s period 2 payoff does not depend
on his own period 1 action, if the counterpart cooperated in period 1, which happens
when the counterpart has type d2 ≤ d∗.

Suppose the counterpart has defected in period 1, which happens if and only if
the counterpart’s type is above d∗. By defecting rather than cooperating in period 1
and then following the equilibrium strategy, two possible effects will change Player
1’s period 2 payoff: (1) he will defect rather than cooperate in period 2 if his type is
d1 ≤ m∗ where m∗ > d∗, and (2) his counterpart of type d2 ∈ (d∗, 1− μ) will defect
rather than cooperate in period 2.

The own action change effect, effect (1), is present if and only if Player 1’s type
is d1 < m∗. Recall that, conditional on defection by the counterpart in period 1,
Player 1 believes that the counterpart’s type is above d∗. Suppose the counterpart
acts as if Player 1 cooperated in period 1. Then, in period 2, the counterpart of type
d2 ∈ (d∗, 1− μ] will cooperate while the counterpart of type d2 > 1− μ will defect.
Given such behaviour from the counterpart, Player 1 of type d1 gains his outside option
value d1, but loses 1−μ if his counterpart cooperates, which happens with conditional
probability F(1−μ)−F(d∗)

1−F(d∗) . Conditional on the counterpart defecting in period 1, effect
(1) changes type d1 Player 1’s payoff by

d1 − (1 − μ) · F(1 − μ) − F(d∗)
1 − F(d∗)

(21)

if di < m∗. Note that in the analysis of effect (1), we assume that the counterpart acts
as if Player 1 cooperated in period 1. Therefore, the amount in (21) is exactly type d1
Player 1’s gain from defection at history (C, D).

We next turn to effect (2). By defecting rather than cooperating in period 1, Player
1 causes the counterpart of type d2 ∈ (d∗, 1 − μ) to defect rather than cooperate in
period 2. Given that Player 1 defects in period 2, effect (2) causes Player 1’s period 2
payoff to go down by μ with conditional probability F(1−μ)−F(d∗)

1−F(d∗) . So, by defecting

123

Author's personal copy



Stag Hunt with unknown outside options

rather than cooperating in period 1 and then following the equilibrium strategy, type
d1 Player 1’s period 2 payoff changes by

(
1−F(d∗)

) ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

d1 − (1 − μ) · F(1 − μ) − F(d∗)
1 − F(d∗)

︸ ︷︷ ︸
effect of Player 1’s own action change,

fixing the counterpart’s action.

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

1d1≤m∗ − μ · F(1 − μ) − F(d∗)
1 − F(d∗)

︸ ︷︷ ︸
effect on the counterpart’s

action change.

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(22)
Since the cut-off at history (C, D) ism∗ > d∗, type d∗ player is indifferent between

defecting and cooperating in period 1 and then following the equilibrium strategy if
and only if

0 =d∗ − F(d∗) · (1 − μ)

+ δ · (1 − F(d∗)
) ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

d∗ − (1 − μ) · F(1 − μ) − F(d∗)
1 − F(d∗)

︸ ︷︷ ︸
Part M: type d∗ Player 1’s gain

by defecting rather than cooperation at history (C, D).

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

− μ · F(1 − μ) − F(d∗)
1 − F(d∗)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(23)
It then follows that, the cut-off in the first period, d∗, is a solution to (23), which can
be simplified to:

d∗ = (1 − δ − μ)F(d∗) + δF(1 − μ)

1 + δ − δF(d∗)
, (24)

It can be verified that the RHS of (23) is strictly negative when d∗ = 0, and it is strictly
positive when d∗ = 1 − μ. Since the RHS of (23) is continuous in d∗, equation (23)
has a solution in (0, 1 − μ), for any μ ∈ [0, 1). In case there are multiple solutions,
we let d∗ be the minimum one in (0, 1 − μ).

We now turn to prove that after Player 1 cooperated and his counterpart defected
in period 1, Player 1 of type d∗ strictly prefers to continue cooperating. As shown in
(23), by defecting rather than cooperating at history (C, D), by (6) the conditional
payoff of Player 1 of type d∗ changes by

d∗ − (1 − μ) · F(1 − μ) − F(d∗)
1 − F(d∗)

= − 1
δ

· (d∗ − F(d∗)
) + (

F(1 − μ) − F(d∗)
) − μ

δ
· F(d∗)

1 − F(d∗)

− (1 − μ) · F(1 − μ) − F(d∗)
1 − F(d∗)

= 1

1 − F(d∗)
·
{

−d∗ − F(d∗)
δ

+ μ ·
[

F(1 − μ) −
(

1 + 1

δ

)

· F(d∗)
]}

.

(25)

Since d > F(d) for all d ∈ (0, 1] and since d∗ ∈ (0, 1], (25) is strictly negative
for the case μ = 0. That is, for μ = 0, type d∗ of Player 1 is better off cooperating at
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history (C, D). Since following history (C, D), Player 1’s second period strategy is of
the threshold form, the corresponding threshold, denoted m∗, then satisfies m∗ > d∗
for the case μ = 0. The next lemma asserts that d∗ as a function of μ is continuous at
μ = 0, and hence by continuity, formula (25) is negative for sufficiently small μ > 0,
as desired.

Lemma 1 There exists μ̃ > 0 and a function d∗ : [0, μ̃) → (0, 1) such that d∗(μ) is
a solution to (24) for all μ ∈ [0, μ̃), and d∗(μ) is continuous at μ = 0. Furthermore,
for all μ ∈ [0, μ̃), d∗(μ) < 1 − μ.

Proof Let

H(μ, d) := (1 − δ − μ)F(d) + δF(1 − μ)

1 + δ − δF(d)
. (26)

Let G : [0, 1] × [0, 1] → R be

G(μ, d) := H(μ, d) − d. (27)

For μ = 0, let d0 be the minimal solution to G(0, d) = 0 on (0, 1). Here d0 is well
defined because (i) G(0, d = 0) > 0 and G(0, d = 1) < 1, and hence a solution to
G(0, d) = 0 on (0, 1) exists; (ii) the function G is continuous function on a compact
set, hence the smallest solution exists.

Let μ > 0. Since G(0, d0) = 0 and G(μ, d) is decreasing in μ, G(μ, d0) < 0
for all 0 < μ < 1. Moreover, since G(0, 0) > 0, and G(μ, d) is continuous in μ,
for sufficiently small μ > 0, G(μ, 0) > 0. Namely, there exists μ̃1 > 0 such that
G(μ, 0) > 0 for all μ ∈ (0, μ̃1]. Therefore, for μ ∈ (0, μ̃1], there exists a solution
d ∈ (0, d0] to G(μ, d) = 0. Let d∗(μ) be the maximal solution in d to G(μ, d) = 0
in (0, d0]. Here, again, d∗(μ) is well defined since G is continuous.

We next prove the continuity of d∗(μ) at μ = 0. We will show that for every
sequence (μn)n∈N that converges to 0, the sequence

(
d∗(μn)

)

n∈N converges to d0,
where d0 := d∗(0).

Suppose to the contrary that there exists a sequence (μn)n∈N that converges to 0,
under which the sequence

(
d∗(μn)

)

n∈N does not converge to d0. Then there exists
ε > 0 (without loss of generality we can assume that ε < 3d0) such that for every
N ∈ N, there exists n ≥ N with |d∗(μn) − d0| ≥ ε. Since G(0, 0) > 0 and d0 is
the minimal solution to G(0, d) = 0, we have G(0, d) > 0 for all d ∈ [0, d0). This,
togetherwith ε

3 < d0, imply thatG(0, d0− ε
3 ) > 0.Hence, for N sufficiently large, and

for all n ≥ N , we haveG(μn, d0− ε
3 ) > 0 andG(μn, d0) < G(0, d0) = 0. Therefore,

the equation G(μn, d) = 0 has a solution in [d0 − ε
3 , d0]. Since d∗(μn) is defined

as the largest solution in [0, d0] to G(μn, d) = 0, we have d∗(μn) ∈ [d0 − ε
3 , d0],

contradicting |d∗(μn) − d0| ≥ ε. Hence for every sequence (μn)n∈N that converges
to 0, the sequence

(
d∗(μn)

)

n∈N converges to d0, as claimed.
We next argue that for small μ, d∗(μ) < 1 − μ. Indeed, since d∗(μ) + μ is

continuous in μ at μ = 0 and d∗(0) + 0 < 1, there exists μ̃2 > 0 such that for all
μ ∈ [0, μ̃2), we have d∗(μ) + μ < 1. The proof of Lemma1 is complete by letting
μ̃ = min(μ̃1, μ̃2). 	
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We have thus shown that for sufficiently small μ, Player 1 of type d∗ is indifferent
between cooperating and defecting in period 1, and he is better off continuing coop-
eration after the history (C, D). By (21) (resp. the effect of Player 1’s own action
change in (22)), Player 1’s payoff change if he defects rather than cooperates in period
1 (resp. after the history (C, D)) is strictly decreasing in his type d1. Hence (i) it is
optimal for Player 1 to cooperate in the first period if and only if d1 ≤ d∗, and (ii)
following (C, D), Player 1 of type d1 ≤ d∗ strictly prefers to continue cooperating.

To complete the proof that s∗ is an equilibrium, it is left to verify that Player 1
has no incentive to deviate from s∗

1 after histories (D, D), (C,C), and (D,C). If both
players defect in period 1, then Player 2must be of a type above d∗, and thus he defects
for sure in period 2, making it optimal for Player 1 to defect. If Player 2 cooperated in
period 1, then he must be of type d2 ≤ d∗, and thus continues cooperating in period
2, making it optimal for Player 1 to cooperate.

A.4 Proof of Proposition 4

Suppose F1 ∈ G1. By Definition2, for every B > 1, μ ≥ 0, and x ∈ (0, 1], we have
(1 − μ)FB(x) ≤ FB(x) = F1(

x
B ) < F1(x) ≤ x . By Corollary1, full defection is the

unique equilibrium of G1(FB, μ).
Suppose μ is sufficiently small and it satisfies Proposition3 (that is, μ ∈ [0, μ̂)).

Since B > 1 and FB(x) < x for all x ∈ (0, 1], by Proposition3, the strategy profile
s∗ defined in (4)–(5) is an equilibrium of G2(FB, μ).

We first analyze the case μ = 0. Define

HB(x) := (1 − δ)FB(x) + δ · FB(1)

1 + δ − δ · FB(x)
. (28)

By (24), the first-period threshold d∗ of s∗ in G2(FB, μ = 0) is a fixed point of HB .
Since F1 satisfies (8) and since

H1(x) > x iff F1(x) >
x − δ(1 − x)

1 − δ(1 − x)
, (29)

there exists x̂ ∈ (0, 1) such that H1(x) > x for all x ∈ (̂x, 1). Let ε > 0. There exists
xε ∈ (1 − ε

2 , 1) such that H1(xε) > xε . By the uniform continuity of HB(x) as a
bivariate function of (B, x) on [1, 2] × [0, 1], there exists Bε > 1 such that for every
1 < B < Bε , HB(xε) > xε . Let B ∈ (1, Bε). By (28), HB(1) < 1. By the continuity
of HB(x), the equation HB(d) = d has solutions in (xε, 1). Denote by d∗

0 the minimal
solution to HB(d) = d in (xε, 1).

Similar to the proof of Lemma1, there exists μ̃ > 0 and a unique continuous
function d∗(μ) : [0, μ̃) → (0, 1 − μ) such that d∗(0) = d∗

0 and d∗(μ) satisfies (6).
Therefore, there exists μ′, 0 < μ′ < μ̃, such that for all μ ∈ [0, μ′), d∗(μ)−d∗

0 < ε
2 .

Since d∗
0 ∈ (xε, 1) and xε ∈ (1 − ε

2 , 1), we have d∗(μ) ∈ (1 − ε, 1 − μ) for all
μ ∈ [0, μ′). That is, the two-period game G2(FB, μ) has an equilibrium s∗ defined
in (4)–(5) where d∗ ∈ (1 − ε, 1 − μ), as claimed in Proposition4.
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A.5 Proof of Proposition 5

Let Fu
B : [0, B] → R+ be the uniform distribution on [0, B], B > 1. In this section we

characterize all symmetric equilibrium of G2(Fu
B). We will use the following lemma,

the proof of which is straightforward and hence omitted.

Lemma 2 Let μ = 0, and F(x) = x
B , x ∈ [0, B].

(i) Suppose B < 1. Then G1(F, μ) has exactly two equilibrium points: (s01 , s
0
2 ) and

(sB1 , sB2 ).
(ii) Suppose B = 1; then every y ∈ [0, 1] is a fixed point of F(·) and the set of

equilibria of G1(F, μ) is {(sy1 , sy2 )|y ∈ [0, 1]}.
(iii) Suppose B > 1. The only equilibrium of G1(F, μ) is (s01 , s

0
2 ).

As shown in Proposition2, all equilibria of G2(Fu
B) consist of threshold strategies.

We will first show that given the second-period thresholds, the first-period threshold
is uniquely determined. We then characterize the thresholds after any history. Then
we go back to determine the first-period threshold. This procedure yields at most 4
different equilibrium points. The next lemma deals with all symmetric equilibria other
than the fully defecting equilibrium.

Lemma 3 Except for the full-defection equilibrium, the game G2(Fu
B) has at most

three symmetric equilibria. They are defined by the following thresholds:

(i) For 1 < B < 1 + δ, γ1 = (d∅ = 1+δ−B
δ

, dC,C
i = 1, dX ,Y

i = 0 for all (X ,Y ) �=
(C,C)).

(ii) γ2 = (d∅ = 2δ
b+√

b2−4δ2
where b = (1+ δ)(B−1)+2δ, dC,C

i = dD,C
1 = dC,D

2 =
1, dC,D

1 = dD,C
2 = 1−d∅

B−d∅ , dD,D
i = 0).

(iii) For1 < B < 1+δ,γ3 =
(
d∅ = 1

2

[

B + δ
1+δ−B −

√
(
B + δ

1+δ−B

)2 − 4

]

, dC,C
i =

1, dC,D
1 = dD,C

2 = (1+δ−B)d∅
δ

, dD,C
1 = dC,D

2 = 1+δ−B
δ

, dD,D
i = 0

)
.

Proof Let s∗ = (s∗
1 , s

∗
2 ) be an equilibrium of G2(Fu

B), where Fu
B(x) = x

B , B > 1

Claim 1 Given the thresholds dh
1

i , h1 ∈ H1, i = 1, 2, the first-period threshold, d∅
i ,

is uniquely determined.

Proof Theproof of Proposition2 shows that if s∗ is an equilibriumofG2(Fu
B),�(di ) ≡

Ui (di ,C) − Ui (di , D) is strictly decreasing in di . Therefore the threshold d∅
i is the

unique solution of �(di ) = 0. If �(di ) < 0 for all di ∈ [0, 1], then d∅
i = 0 and

d∅
i = 1 if �di > 0 for all di ∈ [0, 1]. 	

Denote d∅ = d∗. We next characterize the thresholds dh

1

i , h1 ∈ H1. Let us start
with h1 = (C,C). The updated belief of Player 1 over the types of Player 2 is F̂u

B̂
(d2)

on [0, B̂], and

F̂u
B̂
(d2) = Fu

B(d2|E∅
2 ), B̂ = d∗,
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where E∅
2 is the set of all types of 2 that choose C in the first period. By Proposition2,

E∅
2 = [0, d∗]. By Lemma2,

dC,C
1 = min

(
F̂u
B̂
(dC,C

2 ), B
) = F̂u

B̂
(dC,C

2 ) (30)

and

F̂u
B̂
(dC,C

2 ) = Fu
B(dC,C

2 |d2 ∈ [0, d∗]).

Thus

dC,C
1 =

{
dC,C
2
d∗ if dC,C

2 ≤ d∗
1 if dC,C

2 ≥ d∗.
(31)

Similarly,

dC,C
2 =

{
dC,C
1
d∗ if dC,C

1 ≤ d∗
1 if dC,C

1 ≥ d∗.
(32)

By (30), (31), and (32), either d∗ = 1 and 0 ≤ dC,C
1 = dC,C

2 ≤ 1 or d∗ < 1 and either

dC,C
i = 1 or dC,C

i = 0.
Suppose next h1 = (D, D). By Lemma2,

dD,D
1 = Fu

B(dD,D
2 |d2 /∈ E∅

2 ) = Prob([0, dD,D
2 ] ∩ [d∗, B])

Prob([d∗, B]) . (33)

Hence

dD,D
1 =

{
0 if dD,D

2 ≤ d∗
dD,D
2 −d∗
B−d∗ if dD,D

2 ≥ d∗.
(34)

Similarly,

dD,D
2 =

{
0 if dD,D

1 ≤ d∗
dD,D
1 −d∗
B−d∗ if dD,D

1 ≥ d∗.
(35)

Suppose dD,D
2 > d∗. By (34), dD,D

1 > 0, and by (35), dD,D
1 > d∗. Hence (34) and

(35) imply dD,D
1 = dD,D

2 ≡ d, where

d = d − d∗

B − d∗ .

Equivalently d = d∗
1+d∗−B . Since B > 1, either d < 0 or d > 1, a contradiction. We

conclude that dD,D
i = 0.

Suppose next h1 = (C, D). Then by Lemma2,

dC,D
1 = Fu

B(dC,D
2 |d2 /∈ E∅

2 ) = Prob([0, dC,D
2 ] ∩ [d∗, B])

Prob([d∗, B]) .
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Fig. 4 Graphs of (38) and (39)

Consequently,

dC,D
1 =

{
0 if dC,D

2 ≤ d∗
dC,D
2 −d∗
B−d∗ if dC,D

2 ≥ d∗.
(36)

Similarly,

dD,C
1 =

{
1 if d∗ ≤ dD,C

2
dD,C
2
d∗ if d∗ > dD,C

2 .
(37)

Let dD,C
1 = dC,D

2 = x and dC,D
1 = dD,C

2 = y (symmetric equilibrium). By (36)
and (37),

y =
{
0 if x ≤ d∗
x−d∗
B−d∗ if x ≥ d∗. (38)

x =
{
1 if y ≥ d∗
y
d∗ if y ≤ d∗. (39)

There are two cases (see Fig. 4):
In Case 1 of Fig. 4 the only solution is x = y = 0. In Case 2 there are 3 solutions:

(i) (0, 0); (ii)
(
1, 1−d∗

B−d∗
)
, where 1−d∗

B−d∗ ∈ (0, 1) and (iii)
(

d∗
1−d∗(B−d∗) ,

(d∗)2
1−d∗(B−d∗)

)

provided (d∗)2
1−d∗(B−d∗) ≤ d∗ and d∗

1−d∗(B−d∗) ≥ d∗. It is easy to verify that the last two

inequalities hold iff either d∗ = 0 or d∗ ≤ B+1−
√

(B+1)2−4
2 . Hence 0 ≤ d∗ < 1 must

hold and either dC,C
i = 0 or dC,C

i = 1 (see the sentence below (32)). Let us examine
these three cases.
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Solutions (i) and (ii): Suppose dX ,Y
1 = dX ,Y

2 = 0 for X �= Y , X ,Y ∈ {C, D},
dD,D
i = 0, and d∗ < 1. Then either dC,C

i = 1 or dC,C
i = 0. Suppose first that

dC,C
i = 1. If Player 1 of type d1 ≤ 1 chooses C in period 1 he obtains

U1(C, d1) = d∗

B
+ δ

[
Prob(d2 ≤ d∗) · 1 + Prob(d2 > d∗) · d1

]

= (1 + δ)
d∗

B
+ δ(B − d∗)

B
· d1.

(40)

If 1 chooses D in period 1 he obtainsU1(D, d1) = (1+ δ)d1. Hence d∗ is the solution
to

(1 + δ)
d∗

B
+ δ(B − d∗)d∗

B
= (1 + δ)d∗.

There are two solutions to the last equation. The first one is d∗ = 1+δ−B
B and for

B < 1 + δ, 0 < d∗ < 1. In this case dX ,Y
i = 0 for any (X ,Y ) �= (C,C) and

dC,C
i = 1. The other solution is d∗ = 0 with dD,D

i = 0. On the equilibrium path every
type of every player (except for type 0) defects in both periods. Since any history
h1 other than (D, D) is off the equilibrium path there are no restrictions on beliefs
following h1.

Suppose now dC,C
i = 0. Similarly to (40), U1(C, d1) = d∗

B + δ(B−d∗)
B d1 and

U1(D, d1) = (1+ δ)d1. SinceU1(C, d1) ≥ U1(D, d1) iff d1 ≤ (1−δ)d∗
B we must have

d∗ = (1−δ)d∗
B and again d∗ = 0.

To complete the analysis of solution (i) we prove that d∗ �= 1. Suppose that d∗ = 1
and dC,C

i ≤ 1 (see the sentence below (32)):

U1(C, d1) = d∗

B
+ δ[Prob(d2 ≤ d∗)Prob(d2 ≤ dC,C

2 |d2 ≤ d∗) + Prob(d2 > d∗)d1],

U1(C, d1) = d∗

B
+ δdC,C

2

B
+ δ(B − d∗)d1

B
,

while

U1(D, d1) = (1 + δ)d1.

Since d∗ = 1, we have

1

B
+ δdC,C

2

B
+ δ(B − 1) · 1

B
= 1 + δ.

Equivalently, 1 + δdC,C
2 − δ = B, but this contradicts B > 1.

The solution (ii) is essentially the strategy profile described in (4)–(5). Since it has
been thoroughly studied in “AppendixA.3”, we omit the detailed analysis here.
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Finally, let us analyze solution (iii) of Case 2 in Fig. 4. Let

γ3 = (d∅ = d∗, dC,C
i = 1, dD,D

i = 0, dD,C
1 = dC,D

2 = x = d∗

(d∗)2 − Bd∗ + 1
,

dC,D
1 = dD,C

2 = y = (d∗)2

(d∗)2 − Bd∗ + 1
).

Note, that 0 < x ≤ 1 iff

d∗ ≤ B + 1 − √
(B + 1)2 − 4

2
. (41)

In this case, y = d∗x ≤ d∗ < x . The last inequality holds since B > 1. It can be
easily verified that in this case (38) holds. Hence γ3 defines an equilibrium iff (41)
holds. Suppose that d1 ≤ 1. Then,

U1(C, d1) = (1 + δ)Prob(d2 ≤ d∗) + δProb(d2 > d∗)

·
{
Prob(d2 ≤ x |d2 > d∗) d1 ≤ y
d1 d1 > y

=

= (1 + δ)d∗

B
+ δ(B − d∗)

B
·
{

x−d∗
B−d∗ d1 ≤ y
d1 d1 > y.

(42)

Next,

U1(D, d1) = d1 + δ[Prob(d2 ≤ d∗)·
{
Prob(d2 ≤ y|d2 ≤ d∗) d1 ≤ x
d1 d1 > x

+ d1Prob(d2 > d∗)]

= d1 + δ

{ y
B d1 ≤ x
d1

d∗
B d1 > x

+ δ(B − d∗)d1
B

. (43)

Subcase 1 Suppose d1 ≤ y. Since y ≤ x , U1(C, d1) ≥ U1(D, d1) iff

(1 + δ)d∗

B
+ δ(x − d∗)

B
≥ d1 + δy

B
+ δ(B − d∗)d1

B
.

By the definition of γ3, y = d∗x ,

d1[1 + δ(B − d∗)
B

] ≤ (1 + δ)d∗

B
+ δ(x − d∗)

B
− δd∗x

B

and

d1 ≤ d∗ + δ(x − y)

B(1 + δ) − δd∗ ≡ d̂.
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Next,

d̂ ≥ y iff
d∗ + δd∗(1−d∗)

(d∗)2−Bd∗+1

B(1 + δ) − δd∗ >
(d∗)2

(d∗)2 − Bd∗ + 1

or, equivalently,

d̂ ≥ y iff (1 + δ)(d∗)2 − δ∗((2 + δ)B + δ) + (1 + δ) ≥ 0. (44)

Note, that no equilibrium exists with d̂ < y, since in equilibrium y < d∗ and d̂ = d∗
must hold. So any candidate for an equilibrium of the next two subcases must have
d̂ ≥ y.

Subcase 2 Suppose y < d1 ≤ x . Then

U1(C, d1) ≥ U1(D, d1) iff d1 ≤ (1 + δ)d∗ − δy

B
≡ R1.

Subcase 3 Suppose d1 > x . Then U1(C, d1) ≥ U1(D, d1) iff

(1 + δ)d∗

B
+ δ(B − d∗)d1

B
≥ d1 + δd1d∗

B
+ δ(B − d∗)d1

B
.

d1 ≤ (1 + δ)d∗

B + δd∗ ≡ R2 (45)

It is easy to verify that x ≤ R2 iff x ≤ R1 and in this case R2 ≤ R1. Consequently,
either x ≤ R2 ≤ R1 or x ≥ R2 ≥ R1.

There are four cases to check (recall that y ≤ d∗ < x must hold).
(1) y < x ≤ R2 ≤ R1. In this case, d∗ = R2 and x ≤ d∗, a contradiction. (2)
R1 ≤ R2 ≤ y ≤ x . In this case, d∗ = y and x = 1. That is, d∗

(d∗)2−Bd∗+1
= 1 or

(d∗)2 − Bd∗ + 1 = d∗. But it is easy to verify from (44) that in this case d̂ < y
and it yields no equilibrium. (3) R1 ≤ y ≤ R2 ≤ x . In this case again d∗ = y. (4)
y ≤ R1 ≤ R2 < x . In this case, d∗ = R1 = (1+δ)d∗−δy

B . For 1 < B < 1 + δ,

y = (1+δ−B)d∗
δ

< d∗ and x = 1+δ−B
δ

. It is easy to verify that (i) (41) holds, (ii)
x > R1 ≥ R2 = d∗, and (iii) (44) holds. Since

x = d∗

(d∗)2 − Bd∗ + 1
= 1 + δ − B

δ

we have

d∗ = 2

B + δ
1+δ−B +

√

(B + δ
1+δ−B )2 − 4

,

where d∗ is decreasing in B and limB↓1 d∗ ↗ 1. This completes the proof of Lemma3.
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A.6 Proof of Proposition 6

Suppose μ = 0 and let FB ∈ F (F1), where B > 1. It is shown in “AppendixA.4”
that full defection is the unique equilibrium of G1(FB) if F1 ∈ G1. We next deal with
distributions in G1 and identify a subset of G1 for which GT (FB) has an equilibrium
where d∗

T defined in (12) converges to 1, as the proportion of the dominant types
decreases to 0.

Step 1: For every T ≥ 3, d∗
T < m∗

T .
By the Mean Value Theorem, it can be verified that equation (12) has a solution d∗

T
in (0, 1). By (12),

d∗
T · δ · (1 − FB(d∗

T )
)

= −(
d∗
T − FB(d∗

T )
) + δ · (FB(1) − FB(d∗

T )
) + (1 − d∗

T ) · � · (FB(1) − FB(d∗
T )
)
.

(46)
Since F1 ∈ G1 and since the function FB is generated by F1 with B > 1, by the
definitions of FB and G1, we have FB(x) = F1(

x
B ) < F1(x) ≤ x . Hence

FB(x) < x for all x ∈ (0, 1]. (47)

This observation, together with d∗
T ∈ (0, 1), imply that d∗

T > FB(d∗
T ). By (46),

d∗
T · δ · (1 − FB(d∗

T )
)

< δ · (FB(1) − FB(d∗
T )
) + (1 − d∗

T ) · � · (FB(1) − FB(d∗
T )
)
.

(48)
This implies

d∗
T <

δ · (FB(1) − FB(d∗
T )
)

δ · (1 − FB(d∗
T )
) + (1 − d∗

T ) · � · (FB(1) − FB(d∗
T )
)

δ · (1 − FB(d∗
T )
) . (49)

Equivalently,

d∗
T <

δ · (FB(1) − FB(d∗
T )
) + � · (FB(1) − FB(d∗

T )
)

δ · (1 − FB(d∗
T )
) + � · (FB(1) − FB(d∗

T )
)

= m∗
T .

(50)

Step 2: In this step we show that the strategy profile s∗
T = (s∗

T 1, s
∗
T 2) defined in

Sect. 4 (see (9)–(10) for the first two periods) is an equilibrium of GT (FB).
Let us show that s∗

T 1 is a best response to s∗
T 2. If Player 1 is of type d > 1, then

defect is a dominant strategy. Suppose next Player 1 is of type d ≤ 1.
If the pair of actions in period 2 is (C,C), then Player 2’s type must be below

1, and hence starting from period 3 Player 2 cooperates in every period. Therefore,
cooperating in every period t ≥ 3 is a best response for Player 1 of type d ≤ 1. If
the pair of actions in period 2 is other than (C,C), then regardless of his type Player
2 defects in every period t , t ≥ 3. Hence defecting in every period t , t ≥ 3 is a best
response to s∗

T2 for all types of Player 1.
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Next consider period 2. Suppose the first-period pair of actions is (C,C). Then
Player 2’s type must be below d∗

T , and Player 2 cooperates in period 2. Therefore,
cooperate in period 2 is a best response of Player 1 of type d ≤ 1.

Suppose next the first-period pair of actions is (D, D), then regardless of his type
Player 2 defects in period 2, and defecting in period 2 is a best response for all types
of Player 1.

Suppose the first-period pair of actions is (D,C). Then Player 2’s type must be
below d∗

T . Since d
∗
T < m∗

T (Step 1), Player 2 cooperates in period 2. Cooperating in
period 2 is therefore a best response action for Player 1 of type d ≤ 1.

Suppose the first-period pair of actions is (C, D). If Player 1 cooperates in period
2, his expected payoff is

v1(C)|(C,D) := FB(1) − FB(d∗
T )

1 − FB(d∗
T )

· 1 + FB(1) − FB(d∗
T )

1 − FB(d∗
T )

· �

δ

+
(

1 − FB(1) − FB(d∗
T )

1 − FB(d∗
T )

)

· d1 · �

δ
,

(51)

where
FB (1)−FB (d∗

T )

1−FB (d∗
T )

is the conditional probability that Player 2 cooperates in period

2, given that he defected in period 1. If Player 1 of type d1 defects in period 2, his
expected payoff is

v1(D)|(C,D) := d1 + d1 · �

δ
. (52)

It can be verified that v1(C)|(C,D) ≥ v1(D)|(C,D) if and only if

d1 ≤ δ · (FB(1) − FB(d∗
T )
) + � · (FB(1) − FB(d∗

T )
)
)

δ
(
1 − FB(d∗

T )
) + � · (FB(1) − FB(d∗

T )
)

︸ ︷︷ ︸
m∗

T

. (53)

By (13), the RHS of (53) is equal to m∗
T . Therefore, if the first-period pair of actions

is (C, D), it is a best response for Player 1 of type d1 ≤ m∗
T to cooperate in period 2.

Next we examine the first period actions. If Player 1 of type d1 plays C in the first
period and follows s∗

T 1 then after, his expected payoff (given that Player 2 plays s∗
T2)

is

v1(C) := FB(d∗
T ) + δ · FB(1) · 1 + � · [FB(1) · 1 + (1 − FB(1)) · d1

]
. (54)

If Player 1 of type d1 plays D in the first period and follows s∗
T 1 then after, he obtains

v1(D) := d1+δ ·[FB(d∗
T )·1+(

1−FB(d∗
T )
)·d1

]+�·[FB(d∗
T )·1+(

1−FB(d∗
T )
)·d1

]
.

(55)
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By (54) and (55), it can be verified that v1(C) ≥ v2(D) if and only if

d1 ≤ FB(d∗
T ) + δ · (FB(1) − FB(d∗

T )
) + � · (FB(1) − FB(d∗

T )
)
)

1 + δ
(
1 − FB(d∗

T )
) + � · (FB(1) − FB(d∗

T )
)

︸ ︷︷ ︸
d∗
T

. (56)

Note that the RHS of (56) is d∗
T given by (12).

We conclude that in the first period, it is a best response for Player 1 of type d1 ≤ d∗
T

to cooperate and all other types to defect. This completes the proof of Step 2.
Step 3: In this step we show that if F1 satisfies (14), then for FB ∈ F (F1), d∗

T
converges to 1 as B ↓ 1.

Suppose that F1 ∈ G1 and F1 satisfies (14). Then there exists x̂ ∈ (0, 1) such that
for all x ∈ (̂x, 1),

F1(x) >

RT (x)
︷ ︸︸ ︷
x − (δ + �)(1 − x)

1 − (δ + �)(1 − x)
. (57)

Let

HT
1 (x) := F1(x) + (δ + �)

(
1 − F1(x)

)

1 + (δ + �)
(
1 − F1(x)

) .

It can be verified that the condition F1(x) > RT (x) is equivalent to HT
1 (x) > x . Let

HT
B (x) := FB(x) + δ

(
FB(1) − FB(x)

) + �
(
FB(1) − FB(x)

)

1 + δ
(
1 − FB(x)

) + �
(
FB(1) − FB(x)

) . (58)

By (12), the threshold for cooperation in the first period of GT (FB), d∗
T , is a fixed

point of HT
B .

It can be verified that for B > 1, HT
1 (x) > HT

B (x) for every x ∈ (0, 1]. By the
uniform continuity of HB(x) as a bivariate function of (B, x) on [1, 2] × [0, 1], for
every ζ , there exists Bζ > 1 such that for every 1 < B ≤ Bζ ,

max
x∈[0,1]

(
|HT

1 (x) − HT
B (x)|

)
< ζ. (59)

To complete the proof of Proposition6, let 0 < ε < 1. Since F1 satisfies (14), there
exists xε , 1 − ε < xε < 1 such that HT

1 (xε) > xε . By (59), there exists Bε such that
for every 1 < B < Bε , HT

B (xε) > xε . By (58), HT
B (1) < FB(1) < 1. Since HT

B (x) is
continuous in x , the equation HT

B (x) = x has a solution d∗
T ∈ (1 − ε, 1). Therefore,

the first-period threshold d∗
T given in (12), is in (1 − ε, 1), as claimed.
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