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We analyze the economic impact of process innovations where 
the innovator auctions off licenses to b oth p otential entrants 
and incumbent firms. It is shown that opening the market 
to entrant licensees, the incentive to innovate is maximized 
if the industry is initially a monopoly, as was envisioned by 
Schumpeter (1942). This is in contrast to previous literature 
on licensing of process innovations when entry is excluded: 
the incentive to innovate is maximized in an oligopoly market 
if licenses are sold by auction (Sen and Tauman, 2007) or in 
a competitive market if licenses are sold by royalty (Arrow, 
1962). The post-innovation market structure, the diffusion of 
the innovation and the social welfare are analyzed and com- 
pared with the case where entry is excluded. 
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. Introduction 

The analysis of optimal licensing strategies of an innovator, the post innovation mar-
et structure as well as the incentive to innovate has been extensively studied in the
iterature and can be traced back to Arrow (1962) . Arrow shows that the revenue of
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an innovator who sells licenses by means of a per-unit royalty is higher in a competi-
tive market, compared with a monopolistic market. By focusing on the comparison of a
monopolistic and a competitive market, Arrow avoids the strategic interactions between 

potential licensees, which is crucial in the analysis of an oligopoly. The game-theoretic 
framework which enables such interaction was intro duced indep endently by Katz and 

Shapiro (1985) and Kamien and Tauman (1986) (see ( Kamien, 1992 ) for a review of the
first decade results on this topic). Kamien and Tauman (1986) and the extended analysis 
in Sen and Tauman (2007) show that an oligopoly (instead of a monopolist or a compet-
itive market) maximizes the revenue of an innovator who sells licenses by either a lump
sum fee or by a two part tariff (a combination of a lump sum fee and a per unit royalty). 1 
In these papers, as well as most other papers on optimal licensing of new innovations, it
is assumed that incumbent firms are the only potential licensees. An important point not
sufficiently perceived in the literature, and which constitutes our main subject, is that 
when the innovation reduces the previously high entry cost and makes entry profitable, 
the innovator may benefit from selling licenses to entrants as well as to incumbent firms.

For example in the US steel industry, the traditional technology (integrated mills) 
produces on a large scale that is typically economical to build in 2 million-ton per year
annual capacity and up. The introduction of a new technology for producing steel, the
minimill, requires a much smaller capacity (a typical size is 200,000 to 400,000 tons
per year) and can be easily started and stopped on a regular basis. Collard-Wexler and
De Loecker (2014) show that the introduction of minimill brought in entry into the steel
market and led to a drop in the market share of the incumbent technology. Moreover,
minimill is more efficient in the sense that its total factor productivity is at least as high
as that of the old technology. 2 

This paper analyzes the economic impact of process innovations where the innovator 
can sell licenses to b oth p otential entrants and incumbent firms. Licenses in our model
are sold by auction aiming to maximize the revenue of the innovator. The post-innovation 

market structure, the diffusion of the innovation and the incentive to innovate are ana-
lyzed. 

In contrast to the literature dealing with licensing of process innovation to incumbent 
firms only, it is shown, surprisingly at first glance, that opening the Cournot market 
to entrant licensees, the incentive to innovate is maximized if the industry is initially 

a monopoly. This is true for drastic as well as non-drastic innovations. If the initial
industry exogenously had one less incumbent, the innovator could induce the same post- 
licensing market structure by selling the same number of total licenses but shifting one
1 The optimal size of the oligopoly depends on the magnitude of innovation, demand intensity and the 
marginal cost of production. 

2 Another example is in the television industry. The traditional cable TV was introduced nearly a half 
century before the Internet. When the Internet was first developed, sending video through it was difficult as 
the result of limited bandwidth capacity. By the mid of the first decade in the 21st century the broadband 
price went dramatically down and as a result many Internet TV companies entered the television industry 
(e.g., Netfix and Amazon). The entry of Internet TV companies induced one quarter of households to 
abandon their cable subscriptions (see ( Gali, 2017 )). 
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icense from incumbents to entrants. This yields the innovator a weakly higher revenue
ince it avoids an incumbent’s “replacement effect”. This result is consistent with the
bservation of Schumpeter (1942) that monopolistic industries, those in which individual
rms have a measure of control over their product price, provide a more hospitable
tmosphere for innovation than purely competitive ones. This is also in line with Chen
nd Schwartz (2013) , who show that the gain of a innovator from the exclusive use of a
roduct innovation can be larger in a monopoly market than in a perfectly competitive
ne. 

It is further shown that the post-innovation number of firms is larger the smaller is
he magnitude of innovation. Namely less significant innovations diffuse more (i.e., are
icensed to a larger number of firms). To clarify this point notice that the (negative)
ompetition effect of an additional licensee on the innovator’s revenue is increasing in
he magnitude of the innovation and as a result the innovator is more reluctant to issue a
arge number of licenses for more significant innovations. Furthermore, it is shown that for
elatively significant innovations the innovator chooses to sell licenses only to incumbent
rms and not to entrants. For less significant innovations the innovator sells licenses to
ome entrants and to all incumbent firms. The result that the innovator prefers incumbent
icensees to entrant licensees seems puzzling at first glance, since typically entrants are
illing to pay for a license more than incumbent firms (each entrant is willing to pay all his
rofit while each incumbent firm is willing to pay only the incremental profit). However,
n entrant licensee increases the number of active firms by 1 causing the Cournot profit
f each firm to shrink. The effect of a weaker competition on the revenue of the innovator
s larger and the innovator prefers incumbent firms to entrants. 

We are aware of only few papers which consider entrants as potential licensees. Gilbert
nd David (1982) (GN hereafter) study a monopolistic market and show that the mo-
opolist has an incentive to maintain its monop oly p ower by patenting new technologies
o preempt p otential comp etition. This leads to patents that are neither used nor li-
ensed to others (shelving). 3 While GN analyze the interaction between a monopolistic
ncumbent and a potential entrant competing for an innovation, this paper studies the
nteraction between multiple incumbent firms and potential entrants where an outside
nnovator sells multiple licenses. 

Hoppe et al. (2006) (HJM hereafter) is the paper closest to ours as it considers a
arket with several incumbent firms and many potential entrants. In HJM an innovator

ells licenses through a uniform auction (UA), where he chooses a number k of licenses
o sell to both incumbent firms and entrants. Each one of the k highest bidders (whether
ncumbent firm or entrant) obtains a license and all licensees pay the same amount, the
 k + 1) th highest bid. Externality plays an important role in UA, since each bidder’s
3 In a recent paper, Tauman et al. (2017) show that shelving may not occur under a monopolistic market 
f the innovator cannot give a take-it-or-leave-it offer, but rather engage in a bargaining process with the 
ncumbent. The innovator may benefit from selling a few licenses to entrants before approaching the in- 
umbent because it allows the innovator to collect fees from entrants during the bargaining process and not 
ess important will credibly increase the innovator’s threat on the incumbent, as it increases the number of 
icenses the innovator credibly sells in case the bargaining fails. 
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willingness to pay for a license depends not only on the total number of licenses, but also
on the distribution of entrants and incumbent licensees. Unfortunately, UA has multiple 
equilibrium outcomes which results in multiple equilibrium payoffs of the innovator. In 

fact, for any number of licenses, k ≥ 1, every partition ( k 1 , k 2 ) of k can b e supp orted as an
equilibrium outcome, where k 1 is the number of incumbent licensees and k 2 is the number
of entrant licensees. The innovator only controls k and has no control over the partition
of k into incumbent and entrant licensees. It is, therefore, difficult (if not impossible) to
predict the economic impact of the innovation under UA. HJM show that the multiplicity 

of equilibrium outcomes in UA remains a problem even if (weakly) dominated strategies 
are eliminated. HJM therefore mostly deal with the sale of an exclusive license as well
as some special cases involving multiple licenses and focus on whether entrants can be
winners of licenses. 

In this paper, we use, in addition to UA, an alternative auction mechanism, the non-
uniform auction (NUA) which results in a unique equilibrium. In NUA the innovator 
chooses in addition to k , the exact partition ( k 1 , k 2 ). The winners of the auctions are
the k 1 highest incumbent bidders and the k 2 highest entrant bidders. Each incumbent 
licensee pays the ( k 1 + 1) th highest bid among the incumbents’ bids while each entrant
licensee pays the ( k 2 + 1) th highest bid among the entrants’ bids. 4 In contrast to UA,
externalities do not play a role in NUA since the post-innovation market structure is
fixed regardless of the bids. For every ( k 1 , k 2 ), the equilibrium outcome (in undominated
strategies) of the auction is uniquely determined. 

At first glance it seems that the ability to choose ( k 1 , k 2 ) and to differentiate the
license fee of entrants from incumbent firms must yield the innovator a higher payoff in
NUA (than in UA). But this may not be the case. Indeed, on one hand every entrant
licensee pays in NUA her entire profit while in UA it is (like any incumbent licensee) only
the incremental profit of an incumbent licensee. However, an incumbent is willing to pay
more in UA as a licensee if he takes the place of an entrant licensee and thereby limits
entry (preemption effect). In contrast, in NUA the preemption effect is absence since 
every incumbent licensee takes the place of another incumbent firm and thus does not
change the number of active firms. It is shown that for relatively significant innovations, 
the innovator’s highest equilibrium payoff in UA exceeds his unique equilibrium payoff in 

NUA. As mentioned before, for significant innovations, the innovator is best off having a 
small (or even 0) number of entrant licensees in both types of auctions. In this case the
benefit from a higher willingness to pay of incumbent firms (preemption effect) exceeds 
the loss in revenue due to the inability to price differentiate entrant licensees. 

This paper is organized as follows. In Section 2 we describe the model. In Section 3 we
analyze the uniform auction (UA) and show that UA has multiple equilibrium outcomes. 
In Section 4 we study an alternative auction mechanism, the non-uniform auction (NUA) 
4 Another auction mechanism, semi-uniform auction (SUA), with a weaker asymmetry requirement than 
NUA is briefly discussed in Section 5 . In SUA, the innovator, like in NUA, cho oses b oth k and the partition 
( k 1 , k 2 ) of k . The winners of the auctions are, again, the k 1 highest incumbent bidders and the k 2 highest 
entrant bidders. But unlike NUA, the license fee is the same across all licensees. 
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nd use NUA to analyze the post-innovation market structure, the diffusion of the innova-
ion and the incentive to innovate. We close with conclusion and extensions in Section 5 .

. The Model 

Consider an industry with a set N = { 1 , . . . , n } of incumbent firms who produce the
ame product with marginal cost c > 0. Potential entrants are unable to enter the market
ither because of high entry cost or since the current technology is protected by a patent.
n outside innovator comes along with an innovation which eliminates the entry cost and

educes the constant per unit cost from c to c − ε, 0 < ε≤ c . 5 The numb er of p otential
ntrants is assumed to be sufficiently large that exceeds the optimal number of licenses
old by the innovator. 

emark. The assumption that the new technology has zero entry cost is made for sim-
licity only. Our main insights remain valid as long as the entry cost with the new
echnology is relatively small. 

The inverse demand function is assumed to be linear, 6 p = max ( a −Q, 0) , a > c . After
he licensing stage, denote by m 0 ( ≤n ) the number of firms producing at the old marginal
ost c (the non-licensee incumbent firms) and by m 1 (= k) the number of firms producing
t the new marginal cost c − ε (the incumbent and entrant licensees). Denote by π0 ( m 0 ,
 1 ) the Cournot profit of a firm producing with the old technology and by π1 ( m 0 , m 1 )

he Cournot profit of a firm producing with the new technology. 
It can be verified that 

π0 ( m 0 , m 1 ) = 

{ ( ( a −c ) −εm 1 
m 0 + m 1 +1 

)2 if m 1 ≤ a −c 
ε

0 if m 1 > 

a −c 
ε

(1)

π1 ( m 0 , m 1 ) = 

⎧ ⎨ 

⎩ 

( ( a −c )+( m 0 +1) ε
m 0 + m 1 +1 

)2 if m 1 ≤ a −c 
ε( ( a −c )+ ε

m 1 +1 
)2 if m 1 > 

a −c 
ε

ithout loss of generality we normalize a − c, the quantity demanded at the price c , to
e 1. Note that the innovation is drastic iff ε ≥ a − c . Therefore, after normalization, the
nnovation is drastic if ε≥ 1 and non-drastic if ε< 1. 

In UA the players are engaged in a three-stage game, G u . In the first stage the in-
ovator chooses and announces the numb er k of licenses to b e auctioned off, to b oth
ncumbent firms and new entrants. In the second stage the licenses are allocated to the
inners of a uniform auction where each one of the k highest bidders obtains a license
nd pays the ( k + 1) th highest bid. In case of a tie, it is assumed that incumbent firms
5 In principle even ε≤ 0 may be valuable, if the innovation allows for a profitable entry. In this paper, 
owever, we focus on the case ε> 0. 
6 One of our main results which shows that the innovator’s incentive to innovate is maximized when the 
arket is initially a monopoly is true for a general demand structure. 
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have priority over entrants. 7 If a tie involves only one type of bidders, the tie is resolved
at random. In the third and last stage the incumbents and the entrant licensees compete
à la Cournot. Let G u ( k ) be the subgame of G u which starts after the announcement of k .

In NUA the players are also engaged in a three-stage game, G nu . In the first stage the
innovator chooses and announces ( k 1 , k 2 ), where 0 ≤ k 1 ≤ n − 1 and k 2 ≥ 0 are the num-
ber of licenses he auctions off to incumbent firms and entrants, respectively. Let G nu ( k 1 ,
k 2 ) be the subgame of G nu which starts in the second stage of G nu . In G nu ( k 1 , k 2 ),
licenses are sold through a non-uniform auction. Each of the k 1 highest incumbent bid-
ders obtains a license and pays the ( k 1 + 1) th highest bid among the incumbents’ bids.
Similarly, each of the k 2 highest entrant bidders obtains a license and pays the ( k 2 + 1) th
highest bid among the entrants’ bids. Ties are resolved at random. In the third stage the
firms in the industry (licensees and non-licensees) engage in Cournot competition. Note 
that the auction is not well defined for k 1 = n . Thus we limit k 1 to n − 1 . 

In G nu ( k 1 , k 2 ), the value of a license is uniquely determined for each bidder. This is
not the case in UA where the value of a license typically depends on the distribution
of incumbent and entrant licensees. Note that bidders do not usually have dominant 
strategies in UA. 

Proposition 1. Suppose bidders do not use dominated strategies. (i) If the innovator 
auctions off a total of 1 

ε licenses (using either UA or NUA), then the Cournot price is c ,
the pre-innovation marginal cost, and every non-licensee firm is driven out of the market.
Each licensee pays his entire profit and the innovator obtains the total industry profit.
(ii) It is never optimal for the innovator in both UA and NUA to auction off more than
1 
ε licenses. 

Proof. Part (i) is a straightforward consequence of (1) . Part (i) asserts that when k = 

1 
ε

only licensees are active firms in the market, and this is obviously true for all k ≥ 1 
ε .

Since the total industry profit is decreasing in k for k ≥ 1 
ε , part (ii) follows. �

It will be shown (see Propositions 3 and A.6 , below) that for ε > 

2 
n +1 the optimal

number of licenses for the innovator is k = 

1 
ε in both UA and NUA . 

Remark. Here we treat the number of licenses as a continuous variable, which is a sim-
plification assumption that is standard in the patent licensing literature (see ( Kamien, 
1992 )). Our main insights remain valid if, instead, we assume that when the integer
7 Let T i (or T e ) be the set of incumbent (or entrant) bidders who bid the lowest winning bid b . Let | T i | 
and | T e | be the number of firms in T i and T e , respectively. Let h be the number of bidders bid above b . 
Each of the h highest bidders (whether an incumbent or an entrant) obtains a license. The allocation of the 
remaining k − h licenses uses the following tie-breaking rule: if k − h ≤ | T i | , k − h incumbents are chosen 
at random from T i to be licensees. if k − h > | T i | , each incumbent in T i obtains a license and k − h − | T i | 
entrants are chosen at random from T e to be licensees. The priority on incumbent firms can be justified by 
cheaper training and installation costs of the new technology (although negligible compared with the license 
fee) for incumbent licensees than for entrant licensees. 
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onstraint is violated, the number of licenses awarded will be the next higher integer
the detailed analysis, however, is much more tedious). 

When ε≥ 1 (drastic innovation), even if the innovator sells an exclusive license, every
on-licensee firm is driven out of the market and the only licensee will achieve the max-
mum industry profit – the monopolistic profit with the new technology. The innovator
xtracts the entire profit from this licensee via competitive bidding for the license. When
< 1 (non-drastic innovation), the pre-licensing market price is above c , and the post-
icensing market price is below c if and only if the innovator auctions off more than 

1 
ε

icenses (regardless of the identity of the winners). Therefore when the innovator auctions
ff k ≥ 1 

ε licenses, he obtains the entire industry profit. Since the total industry profit is
ecreasing in the number of active firms, selling more than 

1 
ε licenses would reduce the

ndustry profit compared with selling only k = 

1 
ε licenses. The rest of the paper focuses

n non-drastic innovations ( ε< 1) and on the case where in both UA and NUA the total
umber k of licenses does not exceed 

1 
ε . 

. Uniform auction 

Consider the subgame G u ( k ) of G u , for 1 ≤ k ≤ 1 
ε . Suppose ( k 1 , k 2 ) is an equilibrium

utcome of G u ( k ), where k 1 , 0 ≤ k 1 ≤n , is the number of incumbent licensees and k 2 = k −
 1 is the number of entrant licensees. Let b ( i ) be the i th highest bid in UA ( b ( i ) = b ( i +1)
f more than one bidders bid b ( i ) ). 

The willingness to pay of an incumbent firm, i , for a license is the difference between
is profit π1 ( n − k 1 , k) as a licensee and his profit as a non-licensee if he drops out. The
atter depends on the type of licensee replacing i . If it is an incumbent, the willingness
o pay of i is 

w 

k 
il ( k 1 ) = π1 ( n − k 1 , k) − π0 ( n − k 1 , k) . (2)

f i expects to be replaced by an entrant, the total number of firms increases by 1 and
he willingness to pay of i is 

w 

k 
ih ( k 1 ) = π1 ( n − k 1 , k) − π0 ( n − k 1 + 1 , k) . (3)

ote that w 

k 
ih can be regarded as an incumbent’s willingness to pay for limiting entry

nd for using the superior technology. Since π0 ( n − k 1 + 1 , k) ≤ π0 ( n − k 1 , k) (see (1) ),
 

k 
ih ( k 1 ) ≥ w 

k 
il ( k 1 ) (by Proposition 1 the equality holds only when k = 

1 
ε ). The fact that

he incumbent is willing to pay for a license more than his value from using the superior
echnology reflects the incumbent’s incentive to preempt entry . 

The willingness to pay of an entrant for a license is simply his Cournot profit, 

w 

k 
e ( k 1 ) = π1 ( n − k 1 , k) . (4)

For every k 1 , w 

k 
e ( k 1 ) ≥ w 

k 
ih ( k 1 ) ≥ w 

k 
il ( k 1 ) , and the equality holds only when k = 

1 
ε .

hat is, if k < 

1 
ε , for any fixed post-auction market structure ( k 1 , k 2 ), any entrant licensee
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is willing to pay for a license more than any incumbent licensee ( w 

k 
e ( k 1 ) > w 

k 
ih ( k 1 ) ).

This reflects Arrow’s “replacement effect”. That is, without any strategic consideration, 
the incumbent gains less from the innovation than an entrant because the incumbent 
“replaces” his technology with a more efficient one, while the entrant had nothing to 
“rest on”. 

Nevertheless it is still possible that in equilibrium some incumbent firm wins a li-
cense. To clarify this point note that the post-auction market structure changes when 

an entrant outbids an incumbent licensee (the number of active firms increases by 1). 
Even though w 

k 
e ( k 1 ) > w 

k 
ih ( k 1 ) , it is possible that w 

k 
ih ( k 1 ) > w 

k 
e ( k 1 − 1) . That is, the

incumbent’s incentive to prevent entry may be larger than the entrant’s gain when he
becomes a licensee. For n = 1 (monopolist incumbent) and k = 1 (single license), since
the industry profit is maximized under monopoly, 

w 

1 
ih (1) = π1 (0 , 1) − π0 (1 , 1) > π1 (1 , 1) = w 

1 
e (0) . 

If bidders do not use dominated strategies, the monop oly incumb ent wins the auction and
entry does not occur – this phenomenon is first discussed in Gilbert and David (1982) .
Hoppe et al. (2006) further analyze the market with more than one incumbent firms and
show that entry may not be preempted in this case. This is because each incumbent may
rely on the other to deter entry – as a result no one really carries out such action (bidders
are required to use mixed strategies to support such equilibrium). The next proposition 

shows that, in fact, if bidders are not restricted to use undominated strategies, then for
any given k , every distribution ( k 1 , k 2 ), k 1 + k 2 = k, can b e supp orted as an equilibrium
outcome. Our result does not require bidders to use mixed strategies. The multiplicity 

arises because each bidder’s willingness to pay depends on his expectation about the post-
auction market structure and the variation in such beliefs supports different equilibrium 

behaviors. 

Proposition 2. Let 1 ≤ k < 

1 
ε . Then (i) any ( k 1 , k 2 ), 0 ≤ k 1 ≤n and k 2 ≥ 0 s.t. k 1 + k 2 = k,

is an equilibrium outcome of G u ( k ) . (ii) For k 1 = 0 , π is an equilibrium payoff of the
innovator in G u ( k ) if and only if π ∈ [0 , kw 

k 
e (0)] . (iii) For 1 ≤ k 1 ≤n , π is an equilibrium

payoff of the innovator in G u ( k ) if and only if π ∈ [0 , kw 

k 
ih ( k 1 )] . 

Proof. See A.2 of the Appendix . �

Proposition 2 asserts that there are two types of multiplicity in G u ( k ) ( 1 ≤ k < 

1 
ε ).

First, every ( k 1 , k 2 ) s.t. k 1 + k 2 = k is an equilibrium outcome of G u ( k ). Second, every
( k 1 , k 2 ) generates for the innovator a continuum of equilibrium payoffs. In fact, if in equi-
librium the highest k + 1 bids are 

(
b ∗(1) , ..., b 

∗
( k) , b 

∗
( k+1) 

)
then for every b , 0 ≤ b ≤ b ∗( k+1) ,

changing only the ( k + 1) th highest bid from b ∗( k+1) to b also constitutes an equilibrium

outcome. 
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The multiplicity of equilibrium outcomes remains a problem even if (weakly) dom-
nated strategies are eliminated. Hoppe et al. (2006) deal with the game G u with this
estriction and show how complicated is the equilibrium analysis. The unfortunate con-
lusion is that there is no obvious way to predict the outcome of G u nor the choice k of the
nnovator. To have some UA benchmark (which will be compared with the innovator’s
ayoff in NUA), we focus here on a specific type of equilibrium in UA - the one that for
ny k yields the innovator the highest payoff in G u ( k ). 

roposition 3. Suppose the innovator obtains for every k the highest equilibrium payoff
n G u ( k ) . (i) The corresponding equilibrium number of licensees in G u is 

k ∗u ( n, ε) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

n + 1 if 0 < ε < g( n ) 
n if g( n ) ≤ ε ≤ f ( n ) 
˜ k ( n, ε) if f ( n ) < ε < 

2 
n +1 

1 
ε if 2 

n +1 ≤ ε < 1 . 

ii) If 0 < ε< g ( n ) all licensees are entrants and if g ( n ) ≤ ε< 1 all licensees are incumbent
rms. 

The formulas of f ( n ), g ( n ) and 

˜ k ( n, ε) are complicated and appear in A.1 of the
ppendix . For ε∈ [ g ( n ), 1), k ∗u ( n, ε) is continuous and decreasing in ε. It worth notice

hat g ( n ) > 0 only for n ≥ 4. 

roof. See A.3 of the Appendix . �

Proposition 3 asserts that for less significant innovations the innovator obtains the
ighest equilibrium payoff when all licensees are entrants. On one hand an entrant licensee
ncreases the number of active firms by 1 causing the Cournot profit of each firm to shrink.
owever when selling licenses only to entrants each licensee pays her entire Cournot profit

or a license as opposed to the case where the innovator sells some licenses to incumbent
rms (in the later case every licensee pays only the incremental profit of an incumbent
icensee). When the magnitude of the innovation is relatively small the willingness to pay
f an incumbent firm for a license is small and the negative effect of additional entry
s offset by the incremental willingness to pay of entrants, as compared with incumbent
rms. For relatively significant innovations, the benefit from having only entrant licensees
oes not compensate for the loss caused by a stronger competition and the innovator is
est off when all licensees are incumbent firms. 

emark. Let 2 
n +1 ≤ ε < 1 and suppose bidders do not use dominated strategies. Then

he unique optimal strategy of the innovator is to auction off k = 

1 
ε licenses. The Cournot

rice reduces to the pre-innovation marginal cost c , and every non-licensee firm is driven
ut of the market. Consequently, the multiplicity of equilibrium points of UA occurs only
or less significant innovations, ε < 

2 
n +1 . 
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Denote by π∗
u ( n, ε) the highest equilibrium payoff of the innovator in G u (see formula

in A.5 of the Appendix ). We use π∗
u ( n, ε) as a benchmark to compare the innovator’s

equilibrium payoff in UA with that obtained in NUA. 

4. Non-uniform auction 

In this section the innovator can choose and announce the number of licenses to be
sold to incumbent firms (0 ≤ k 1 ≤ n − 1) 8 and the numb er of licenses to b e sold to
potential entrants ( k 2 ≥ 0). Each incumbent licensee pays the ( k 1 + 1) th highest bid
among the incumbents’ bids. Each entrant licensee pays the ( k 2 + 1) th highest bid
among the entrants’ bids. In G nu ( k 1 , k 2 ), since incumbents and entrants bid on sepa-
rate auctions, each incumbent cannot prevent entry and therefore his willingness to pay 

is w il ( k 1 , k 2 ) = π1 ( n − k 1 , k 1 + k 2 ) − π0 ( n − k 1 , k 1 + k 2 ) . The willingness to pay of each
entrant is w e ( k 1 , k 2 ) = π1 ( n − k 1 , k 1 + k 2 ) . Since bidding the true valuation is a (weakly)
dominant strategy for each bidder, it is assumed that bidders bid truthfully in NUA. The
innovator’s equilibrium payoff in G nu ( k 1 , k 2 ) is then uniquely determined and it is given
by 

πnu ( k 1 , k 2 ) = k 1 w il ( k 1 , k 2 ) + k 2 w e ( k 1 , k 2 ) . (5) 
The next proposition deals with the innovator’s incentive to innovate. 

Proposition 4. Regardless of the demand structure, if the innovator sells licenses by NUA,
his revenue is maximized if the industry is initially a monopoly. 

Pro of. Supp ose there are n , n ≥ 2 incumbent firms. Denote by ( k ∗1 , k ∗2 ) the optimal li-
censing strategy in G nu . Let K 

∗
nu = k ∗1 + k ∗2 . The innovator’s highest payoff is 

α ≡ k ∗1 
(
π1 ( n − k ∗1 , K 

∗
nu ) − π0 ( n − k ∗1 , K 

∗
nu ) 

)
+ k ∗2 π1 ( n − k ∗1 , K 

∗
nu ) . (6) 

Suppose the market has one less incumbent. That is, there are only n − 1 incumbents
left in the market. 

Case 1. k ∗1 ≥ 1 . Using the licensing strategy ( k ∗1 − 1 , k ∗2 + 1) , the innovator obtains 

β ≡ ( k ∗1 − 1) 
(
π1 ( n − k ∗1 , K 

∗
nu ) − π0 ( n − k ∗1 , K 

∗
nu ) 

)
+ ( k ∗2 + 1) π1 ( n − k ∗1 , K 

∗
nu ) . (7) 

Clearly for K 

∗
nu = 

1 
ε , π0 ( n − k ∗1 , K 

∗
nu ) = 0 and α = β. For K 

∗
nu < 

1 
ε , β > α. 

Case 2. Suppose k ∗1 = 0 . Using the licensing strategy (0 , k ∗2 ) , the innovator obtains 

γ ≡ k ∗2 π1 ( n − 1 , k ∗2 ) ≥ k ∗2 π1 ( n, k ∗2 ) ≡ α. (8) 

Again for k ∗2 = 

1 , γ = α. For k ∗2 < 

1 , γ > α
ε ε

8 The auction is not well defined for k 1 = n, thus we limit k 1 to n − 1 . We could extend our definition to 
k 1 = n if we allow the innovator to charge a fixed fee in this case. For n = 1 this fee should be π1 (0 , k) −
π0 (1 , k) . The analysis of NUA with this extension is tedious (see Sen and Tauman (2007) ) and it will not 
change the main results of this paper. 
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Combining Cases 1 and 2, if K 

∗
nu < 

1 
ε the innovator extracts strictly higher revenue

ith n − 1 than with n incumbent firms. For K 

∗
nu = 

1 
ε , when the number of incum-

ent firms is n − 1 the innovator obtains a payoff which is at least as high as the case
here the number of incumbent firms is n . Since this is true for all n ≥ 2, the proof is
omplete. �

Note that Proposition 4 does not depend on the linear structure of the demand func-
ion. For any fixed post-auction market structure, because of the “replacement effect”,
n entrant licensee is willing to pay at least as much as an incumbent licensee (more
f k < 

1 
ε , and the same if k = 

1 
ε ). Note that the “preemption effect” in GN is absent in

UA, since incumbents and entrants bid on separate licenses. Therefore for any number
f licenses ( k 1 , k 2 ), the innovator contemplates, if the initial industry exogenously had
ne less incumbent, the innovator could induce the same post-licensing market structure
y selling the same number of total licenses but shifting one license from incumbents to
ntrants. This yields the innovator a weakly higher revenue since it avoids an incumbent’s
replacement effect”. 9 

Proposition 4 is in contrast to Arrow (1962) , which asserts that the gain from a process
nnovation under a competitive market is higher compared with a monopolistic market.
he reason for the contradicting conclusion derives from Arrow’s assumption that entry

s not possible and licenses can be sold only to those who are already in the market. 10
amien and Tauman (1986) and the extended analysis in Sen and Tauman (2007) take

nto account the strategic interaction between potential licensees (which is crucial in the
nalysis of oligopoly) and show that the revenue of an innovator who sells licenses by
ither a lump sum fee or by a two part tariff (a combination of a lump sum fee and a
er unit royalty) is maximized in an oligopoly market of a size which depends on the
agnitude of innovation, demand intensity and the marginal cost of production. But

hese papers also limit potential licensees to incumbent firms only. 
We next characterize the equilibrium of G nu . Since k 1 ≤ n − 1 the case n = 1 is trivial

o analyze. The following analysis focuses only on n ≥ 2. Note that if the total number of
icensees is 1 ε , every non-licensee firm is driven out of the market and each licensee pays his
ntire Cournot profit (see Proposition 1 ). In this case any partition ( k 1 , k 2 ), k 1 + k 2 = 

1 
ε

ields the innovator the same payoff. To avoid multiple equilibrium outcomes in G nu we
ssume that the innovator in this case chooses k 1 = 

1 and k 2 = 0 . 
ε

9 As pointed out by one referee, the innovator’s revenue would be maximized with no incumbents at all 
instead of an initial monop oly), b ecause an entrant would then bid the entire monopoly profit under the 
ew technology. 

10 In Arrow (1962) , if the innovation is drastic, the innovator in a monopolistic market can extract only 
he increment of the monopoly’s profit, while in a competitive market (since each firm originally earns zero 
rofit) the innovator can extracts the entire monopoly profit under the new technology. If the innovation 
s non-drastic, the benefit from a process innovation comes solely from reducing variable cost and, hence, 
s proportional to the size of output, which is lower under monopoly than under competitive market. Note 
hat Arrow’s result for non-drastic innovation does not extend to product innovations , where the scale of 
utput is no longer a sufficient statistic, as noted by Chen and Schwartz (2013) (they term the opposing 
orce the “coordination effect” – a two-pro duct monop olist can profitably co ordinate the p ost-innovation 
rices, unlike a rivalrous firm.) 
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Proposition 5. (i) For significant innovations ( ε ≥ 1 
2 n −4 ) the innovator sells licenses only 

to incumbent firms and not to entrants. For less significant innovations ( ε < 

1 
2 n −4 ) the

innovator sells licenses to some entrants and to all (but one) incumbent firms. (ii) The
post-innovation number of firms is larger the less significant is the magnitude of innova-
tion. 

Proof. (i) The unique equilibrium strategy of the innovator is characterized in A.6 of the
Appendix . For n ≥ 3, the claims follow from (20) to (21) , the inequality 

1 
2 n −4 ≤

2 
3 n −5 ,

and from k ∗1 ( n, ε) being decreasing in ε. The case n = 2 is an immediate consequence of
(22) –(23) . (ii) See A.7 of the Appendix . �

Proposition 5 (i) asserts that for large innovations the innovator sells all licenses to
incumbents, while for smaller innovations he sells n − 1 licenses to incumbents and the
remaining K 

∗
nu − ( n − 1) licenses to entrants (here K 

∗
nu is the total number of licenses). 11 

The result that the innovator prefers incumbents to entrants seems puzzling at first 
glance, since the preemption effect is absent in NUA (the post-auction market structure 
is fixed regardless of the bids), and each entrant is willing to pay his entire profit for a
license while the incumbent is willing to pay only the increment. However, on the other
hand an entrant licensee increases the number of active firms by 1 causing the Cournot
profit of each firm to shrink. The effect of a weaker competition on the revenue of the
innovator is larger and the innovator prefers incumbent firms to entrants. 

Part (ii) of Proposition 5 states that smaller innovations diffuse more. To clarify this
point notice that the (negative) competition effect of additional licensee on the innovator’s 
revenue is increasing in the magnitude of the innovation. As a result the innovator is more
reluctant to issue a larger number of licenses for larger innovations. In fact, for n ≥ 3 and
for relatively small ε the innovator sells 2 n licenses ( n − 1 licenses to incumbent firms
and n + 1 licenses to new entrants). As ε grows the number of licenses decreases and
as the innovation becomes closer to a drastic innovation ( ε→ 1), the innovator sells one
license only. 

We next compare the innovator’s equilibrium payoff in UA and in NUA. At first glance 
it seems that the ability to separate entrants (who has a higher willingness to pay) from
incumbent firms and hence charge them differently should yield the innovator in NUA a
higher payoff than UA. However, an incumbent licensee is willing to pay more in UA if he
takes the place of an entrant licensee and hence limit entry (in contrast, this preemption
effect is absence in NUA since the post-auction market structure is fixed regardless of
the bids). It is, therefore, not clear which mechanism serves better the innovator. Denote
by π∗

nu ( n, ε) the innovator’s (unique) equilibrium payoff in G nu (see formula in A.8 of
the Appendix ). The next proposition compares π∗

nu ( n, ε) with π∗
u ( n, ε) , the innovator’s

highest equilibrium payoff in UA (see formula in A.5 of the Appendix ). 
11 Note that if n = 2 , ε < 

1 
2 n −4 always holds and licenses are sold to one incumbent firm and to some 

entrants. 
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roposition 6. For n ≥ 4, π∗
nu ( n, ε) > π∗

u ( n, ε) iff ε< h ( n ) . For n = 2 or n = 3 , π∗
nu ( n, ε) ≤

∗
u ( n, ε) for all 0 < ε< 1 . 

The formula of h ( n ) is complicated and appears in A.1 of the Appendix . 

roof. See A.9 of the Appendix . �

Consider the market with at least 4 incumbent firms. Proposition 6 asserts that for
ignificant innovations the innovator can obtain a higher payoff in UA than in NUA.
or ε ≥ 1 

2 n −4 ( > h ( n )) , in both types of auctions the innovator is best off having only
ncumbent licensees (see Propositions 3 and 5 ) and hence the innovator strictly prefers
the highest equilibrium payoff in) UA. When ε decreases from 1 

2 n −4 to 0 the innovator
n NUA sells an increasing number of licenses to entrants in addition to all (but one)
ncumbent firms. This implies that the benefit from differentiating the license fee of
ntrants from incumbent firms is more significant for smaller ε. In particular, for ε< h ( n )
he benefit from price differentiating entrant licensees exceeds the loss in revenue due
o lower willingness to pay of incumbent firms (absence of preemption effect), and the
nnovator is better off using NUA. 

If the pre-innovation market is duopoly or triopoly, the highest equilibrium payoff in
A yields the innovator a (weakly) higher payoff compared with NUA, regardless of the
agnitude of the innovation. Note that unlike UA, in NUA the innovator is constrained
y k 1 ≤ n − 1 . Intuitively, in UA an incumbent firm always faces the threat of being
eplaced by an entrant; while in NUA each incumbent firm obtains a license for certain if
 1 = n and therefore his willingness to pay in this case is 0. 12 The constraint k 1 ≤ n − 1
n NUA always leaves at least one incumbent firm producing with the old technology and
his has a negative competition effect on every licensee. The magnitude of this (negative)
ffect is larger when the number of incumbent firms is smaller and it dominates all other
positive) effects when n = 2 or 3. 

Finally, even if π∗
u ( n, ε) > π∗

nu ( n, ε) , there may exist other equilibrium points in UA
hich yields the innovator a lower payoff than in NUA. We illustrate this in the next
xample. 

Example: Suppose ε = 0 . 2 and n = 5 . 13 In NUA, the innovator’s unique equilibrium
ayoff is 4 

(
π1 (1 , 4) − π0 (1 , 4) 

)
= 0 . 213 and it is obtained when he auctions off 4 licenses

nly to incumbent firms. In UA the innovator’s highest equilibrium payoff is 4 
(
π1 (1 , 4) −

0 (2 , 4) 
)

= 0 . 214 , and it is obtained when he auctions off 4 licenses and all winners happen
lso to b e incumb ent firms. To support this equilibrium in UA the 5th highest bid has to
e submitted by entrants only. In this case each of the 4 incumbent licensees pays more in
A than in NUA in attempt to limit entry. However, there are other equilibrium points
12 Even with a minimum reservation price, the innovator is still reluctant to choose k 1 = n in NUA. The 
ptimal reservation price is π1 (0 , n + k 2 ) − π0 (1 , n − 1 + k 2 ) . That is, when an incumbent drops out, no 
ne replaces him and he reduces the number of licensees. This increases the value of the “outside option”
hich in turn reduces each incumbent’s willingness to pay. 

13 Recall that we assume a − c = 1 . 
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in UA which yields the innovator a much lower payoff. Following Proposition 2 , there
is an equilibrium in which all 4 winners are entrants. In this equilibrium the innovator
obtains only 4 π1 (5 , 4) = 0 . 194 . 14 

5. Conclusion and extensions 

This paper analyzes the economic impact of process innovations where the innovator 
auctions off licenses to b oth p otential entrants and incumbent firms. If the innovator uses
the uniform auction (UA), he has control over the total number k of licenses but not over
the final distribution of licensees. Each bidder’s willingness to pay for a license depends
not only on the number of licenses but also on his expectation about the post-innovation
market structure (the number k 1 of incumbent licensees and the number k 2 of entrant 
licensees, k 1 + k 2 = k). The multiplicity of such b eliefs supp orts multiple equilibrium
behaviors, which makes it almost impossible to predict the outcome of UA. This motivates 
us to use an alternative auction mechanism, the non-uniform auction (NUA), where the 
innovator conducts two separate auctions to entrants and incumbent firms, respectively. 
Since the post-innovation market structure is deterministic, the equilibrium outcome of 
the auction is unique and as such provides sharp predictions – this allows us to study
the economic impact of innovations in the presence of potential entrants. 

The post-innovation market structure, the diffusion of the innovation and the incentive 
to innovate are analyzed under NUA. Since most literature on patent licensing assumes 
that incumbent firms are the only potential licensees, we next briefly compare our results
with the case where entry is excluded. 

Opening the market to entrant licensees, the incentive to innovate is maximized if 
the industry is initially a monopoly. 15 This is in contrast to the case where entry is
excluded, where the innovator’s incentive to innovate is maximized in an industry of size
n = max 

(
3 , 2 

√ 

2 + 

1 
ε − 1 

)
(this result is in line with ( Kamien et al., 1992 ), see A.10 of

the Appendix for a pro of ). Not surprisingly, op ening the market to entrants has positive
effect on social welfare and it yields the innovator a higher revenue, compared with the
case where entry is excluded. However, it is shown (in A.10 of the Appendix ) that these
differences become smaller (namely, excluding entrants becomes less “harmful”) when the 
magnitude of innovation increases. In particular, for sufficiently significant innovations, 
the innovator chooses to sell licenses only to incumbent firms and not to entrants - in this
case the exclusion becomes completely “harmless ”. The “preemption effect” described in 

Gilbert and David (1982) is absence in NUA, since the post-auction market structure 
is fixed regardless of the bids of incumbent firms. Still, the innovator of a relatively
significant innovation prefers to sell licenses only to incumbents and not to entrants. 
This is because an entrant licensee increases the number of active firms by 1 causing the
total industry profit and the Cournot profit of each firm to shrink. 
14 Moreover this is the highest equilibrium payoff of the innovator among all equilibrium points where all 
4 licensees are entrants. 
15 This result is proved under general demand structure and it does not confine to linear demand. 



Y. Tauman, C. Zhao / International Journal of Industrial Organization 56 (2018) 229–276 243 

 

w  

b  

k  

r  

p  

b
 

i  

n  

a  

o  

p  

s  

t  

fi  

e  

l  

p  

i  

l  

a  

i  

a

A

A

l
a
a

a
“

Another related auction mechanism is the semi-uniform auction (SUA), which has a
eaker asymmetry requirement than NUA. In SUA the innovator, like in NUA, chooses
oth k and the exact partition ( k 1 , k 2 ) of k where the winners of the auction are the
 1 highest incumbent bidders and the k 2 highest entrant bidders (ties are resolved at
andom). But unlike NUA, the license fee is the same across all licensees. To ensure the
articipation of incumbent firms in SUA the license fee is set to be the lowest winning
id. 16 
Like in NUA, when selling licenses by SUA, a monopolistic market provides the highest

ncentive to innovate. Comparing the innovator’s payoff, NUA always (irrespective of the
umber of incumbent firms and the magnitude of the innovation) yields the innovator
 (weakly) higher payoff. This is obvious since NUA, like SUA, specifies the partition
f licenses into entrants and incumbent firms but, in addition, allows the innovator to
rice differentiate entrant licensees. 17 More surprisingly, when the innovation is relatively
mall, NUA results in a higher diffusion of technology than SUA. This is because when
he innovation is small, in NUA the innovator sells licenses to all (but one) incumbent
rms as well as some potential entrants; while in SUA he sells licenses only to new
ntrants and not to incumbent firms. This difference stems from the fact that in SUA, as
ong as the innovator sells licenses to incumbent firms, every winner pays the incremental
rofit of an incumbent licensee (this increment decreases to zero as the magnitude of the
nnovation decreases to zero). In contrast, the innovator in NUA can extract entrant
icensees’ entire profits even in the presence of incumbent licensees. To conclude, the
bility to price differentiate new entrant licensees has positive effect not only on the
nnovator’s revenue but also on social welfare, as compared with SUA. The detailed
nalysis of SUA appears in A.13 of the Appendix . 

ppendix 

.1 

f( n ) = 

n 3 + n 2 + 2 n + 4 + 

√ 

n 6 + 8 n 5 + 30 n 4 + 56 n 3 + 50 n 2 + 20 n + 4 

3 n 4 + 8 n 3 + 10 n 2 + 4 n − 4 
˜ k ( n, ε) = { 2 n 3 ε + 10 n 2 ε + 16 nε + 4 n + 8 ε + 6 

−
√ 

4 n 6 ε2 + 34 n 5 ε2 + 119 n 4 ε2 + 4 n 4 ε + 220 n 3 ε2 + 26 n 3 ε + 227 n 2 ε2 + 62 n 2 ε + 124 nε2 + 4 n 2 + 64 nε + 28 ε2 + 12 n + 24 ε + 9 } / 

{ 3(2 n + 3) ε} 

g( n ) = max 
( 
0 , 

3 n 4 + 6 n 3 + 7 n 2 + 4 n − 4 − 2 
√ 

n 8 + 9 n 7 + 31 n 6 + 49 n 5 + 29 n 4 − 9 n 3 − 16 n 2 − 4 n 

5 n 5 + 15 n 4 + 19 n 3 + 9 n 2 + 4 

) 

h ( n ) = max 
( 
0 , 

n 4 + n 3 + 2 n 2 + 4 n −
√ 

3 n 7 + 14 n 6 + 18 n 5 + 7 n 4 + 24 n 3 + 40 n 2 − 16 

2( n 5 + 2 n 4 + n 3 + n 2 + 4 n + 4) 

) 

r( n ) = 

⎧ ⎨ 
⎩ 
e 1 ( n ) if n ≥ 17 

f −1 
1 ( n ) if 2 ≤ n ≤ 16 
16 If (as in UA) every licensee pays the highest losing bid, it may happen that the bids of all incumbent 
icensees fall below the ( k + 1) th highest bid. This is the case if the ( k + 1) th highest bid is submitted by 
n entrant who bids her entire industry profit. Such bid exceeds the willingness to pay of incumbent firms 
nd incumbents are best off not participating in this auction. 

17 SUA also yields the innovator a (weakly) lower payoff than his highest payoff in UA. On one hand 
ll winners in SUA pays a uniform price, like in UA. On the other hand because of the absence of the 
preemption effect” each incumbent firm is willing to pay less in SUA. 
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Fig. 1. The value of f 1 ( ε). 

 

 

 

 

 

 

 

 

 

 

where 
e 1 ( n ) = 

3 n − 5 − 2 
√ 

n 

2 − 4 n + 3 
5 n 

2 − 14 n + 13 
and 

f 1 ( ε) = −8 
√ 

1 + 2 εε3 / 2 − 11 ε2 + 2 
√ 

−48 
√ 

1 + 2 εε7 / 2 − 12 
√ 

1 + 2 εε5 / 2 + 68 ε4 + 34 ε3 + 2 ε2 − 3 ε
ε2 

Fig. 1 shows that the inverse function of f 1 ( ε) exists for 0 < ε < 

1 
2 . 

A.2. Proof of Proposition 2 

(i) Let k ≥ 1 and let ( k 1 , k 2 ) s.t. 0 ≤ k 1 ≤ n − 1 and k 2 = k − k 1 (the case where
k 1 = n will be dealt separately). Let us show that ( k 1 , k 2 ) is an equilibrium outcome of
G u ( k ). Denote b = π1 ( n − k 1 − 1 , k) ( b is well defined since k 1 ≤ n − 1 ) and b = π1 ( n −
k 1 , k) − π0 ( n − k 1 + 1 , k) . Suppose that exactly k 1 incumbent firms and k 2 entrants bid
b and only one entrant bids b . All other incumbents or entrants bid below b . Clearly
b (1) = ... = b ( k) = b, b ( k+1) = b and b ≤ b . We claim that these bid profile constitutes an
equilibrium of G u ( k ). Any incumbent licensee, i , obtains 

π1 ( n − k 1 , k) − b ( k+1) = π0 ( n − k 1 + 1 , k) . 

If i lowers his bid below b the entrant who bids b will replace i . As a result there will
be n − k 1 + 1 firms producing with the inferior technology and i will obtain π0 ( n − k 1 +
1 , k) , the same as his payoff as a licensee. Since the opportunity cost of any entrant
is zero, an entrant licensee (when k 2 ≥ 1) has no incentive to lower her bid. Next let
us show that a non-licensee (incumbent or entrant) can not benefit from outbidding a
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icensee. Suppose j (incumbent or entrant) outbids a licensee i . Then he/she will increase
he license fee from b to b . We claim that the industry profit of j is at most b and
ence he has no incentive to become a licensee. Indeed, if both j and i are incumbent
rms the industry profit of j as a licensee will be π1 ( n − k 1 , k) which is smaller than
 = π1 ( n − k 1 − 1 , k) . If j is an incumbent firm and i is an entrant, the number of firms
sing the inferior technology will reduce to n − k 1 − 1 . The gross profit of j as a licensee
ill be b and his payoff, net of the new license fee, is zero. If j is an entrant, j will obtain
n industry profit of π1 ( n − k 1 + 1 , k) < b if i is an incumbent firm and π1 ( n − k 1 , k) < b

f i is an entrant. In both cases j ’s net payoff is negative. To complete the proof of part (i)
uppose that k 1 = n and hence k 2 = k − n . Suppose every incumbent firm and exactly
 2 entrants bid b = π1 (0 , k) , one entrant only bids b = π1 (0 , k) − π0 (1 , k) and every other
idder bids below b . The license fee is b and it is easy to verify that these bids constitute
n equilibrium of G u ( k ). 

(ii) Let k 1 = 0 , ̃  b ∈ [0 , π1 ( n, k)] and b = π1 ( n − 1 , k) . Suppose exactly k entrants bid b ,
ne entrant only bids ˜ b and every other bidder bids below 

˜ b . The license fee is b ( k+1) =
 

 . Since π1 ( n, k) − ˜ b ≥ 0 , no (entrant) licensee benefits from lowering his bid below 

˜ b .
uppose next that a non-licensee j (incumbent or entrant), bids above b . Then the new
icense fee will increase to b = π1 ( n − 1 , k) and j ’s industry profit is π1 ( n − 1 , k) if j is
n incumbent firm, and π1 ( n , k ) if j is an entrant. In both cases the industry profit does
ot exceed the license fee. Finally, there is no equilibrium of G u ( k ) with k 1 = 0 and s.t.
 ( k+1) > π1 ( n, k) . Otherwise, the industry profit of a licensee does not cover the license
ee. 

(iii) Suppose 1 ≤ k 1 ≤ n − 1 and let ˜ b ∈ [0 , w 

k 
ih ( k 1 )] , where by (3) w 

k 
ih = π1 ( n −

 1 , k) − π0 ( n − k 1 + 1 , k) . Denote b = π1 ( n − k 1 − 1 , k) . Supp ose exactly k 1 incumb ent
rms and k 2 entrants bid b , one entrant only bids ̃  b and every other bidder bids below ̃

 b .
hen b ( k+1) = ̃

 b is the license fee. An incumbent licensee obtains 

π1 ( n − k 1 , k) − ˜ b ≥ π0 ( n − k 1 + 1 , k) . (9)

f he lowers his bid below 

˜ b he will obtain π0 ( n − k 1 + 1 , k) . By (9) this will not benefit
im. A non-licensee j (incumbent or entrant) who outbids a licensee i (incumbent or
ntrant) will increase the license fee from 

˜ b to b = π1 ( n − k 1 − 1 , k) . It is easy to verify
hat independently of the identity of j and i , j ’s industry profit will not exceed π1 ( n −
 1 − 1 , k) . 

Next suppose k 1 = n . Let ̃  b ∈ [0 , π1 (0 , k) − π0 (1 , k)] and let b = π1 (0 , k) . Suppose every
ncumbent firm and exactly k 2 = k − n entrants bid b . Suppose also that only one entrant
ids ˜ b and all other bidders bid below 

˜ b . Then the license fee is b ( k+1) = ̃

 b . A licensee
btains 

π1 (0 .k) − ˜ b ≥ π0 (1 , k) ≥ 0 . (10)

f an incumbent licensee lowers his bid below ̃

 b he will obtain π0 (1, k ) and by (10) he will
ot improve his payoff. If a non-licensee entrant j outbids a licensee i the new license fee
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will be b = π1 (0 , k) and again, independently of the identity of i , the industry profit of j
will not exceed π1 (0, k ). 

Finally, for k ≥ 1 the willingness of an incumbent firm to pay for a license is at most
w 

k 
ih ( k 1 ) . Thus there is no equilibrium b ∗ of G u ( k ) s.t. 1 ≤ k 1 ≤n and b ∗( k+1) > w 

k 
ih ( k 1 ) . 

A.3. Proof of Proposition 3 

Lemma 1. For any 1 ≤ k ≤ 1 
ε , the innovator’s highest equilibrium payoff in G u ( k ) is

obtained when either k 1 = 0 or k 1 = min ( k, n ) . 

Pro of. By Prop osition 2 , given an arbitrary 1 ≤ k ≤ 1 
ε , any 0 ≤ k 1 ≤min ( k , n ) can emerge

as an equilibrium outcome. In addition the highest payoff of the innovator is k π1 ( n , k ) if
k 1 = 0 and kw 

k 
ih ( k 1 ) if 1 ≤ k 1 ≤n . It is shown in the Appendix (see A.4 ) that w 

k 
ih ( k 1 ) is

increasing in k 1 . Thus kw 

k 
ih ( k 1 ) is maximized when k 1 = min ( k, n ) . �

By Lemma 1 the highest equilibrium payoff of the innovator in G u is 

π∗
u ( n, ε) = max 

(
π0 ( n, ε) , ̂  π( n, ε) 

)
where π0 ( n, ε) = max k≥1 k π1 ( n, k ) and ˆ π( n, ε) = max k≥1 k( π1 ( n − min ( k, n ) , k) −
π0 ( n − min ( k, n ) + 1 , k)) . 

Let k ∗u ( n, ε) , k 0 ( n , ε) and 

ˆ k ( n, ε) be maximizers of π∗
u ( n, ε) , π0 ( n , ε) and ˆ π( n, ε) , re-

spectively. Clearly either k 0 ( n , ε) or ˆ k ( n, ε) is a maximizer of π∗
u ( n, ε) . 

Lemma 2. k ( π1 (0 , k ) − π0 (1 , k)) is decreasing in k. 

Proof. Let 

J = k ( π1 (0 , k ) − π0 (1 , k)) = k 

( (
1 + ε

1 + k 

)2 

−
(

1 − kε

2 + k 

)2 
) 

Then 

∂J 

∂k 
= Aε2 + Bε + C 

where A , B and C are functions of k . In particular, 

A = −k 6 + 9 k 5 + 22 k 4 + 24 k 3 + 12 k 2 − 4 k − 8 
( 1 + k ) 3 ( 2 + k ) 3 

B = −−6 k 4 − 14 k 3 − 12 k 2 − 16 k − 16 
( 1 + k ) 3 ( 2 + k ) 3 

C = −4 k 3 + 9 k 2 + k − 6 
( 1 + k ) 3 ( 2 + k ) 3 
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a

C  

m

T

L

P

a

a

T  

(

L

 

a

 

w

nd 

B 

2 − 4 AC = 

−16( k 3 + k 2 − 2 k − 1) 
( k + 2) 4 (1 + k) 2 

learly A < 0 for k ≥ 1 and B 

2 − 4 AC < 0 for k ≥ 2. Therefore ∂J ∂k < 0 for k ≥ 2 and J is
aximized either at k = 1 or at k = 2 . 
Since J | k=1 = 

1 
36 ( ε + 5)(5 ε + 1) and J | k=2 = − 1 

72 (10 ε + 1)(2 ε− 7) , for every ε

J | k=1 − J | k=2 = 

5 
12 ε

2 − 2 
9 ε + 

1 
24 > 0 

hus J = k 
(
π1 (0 , k) − π0 (1 , k) 

)
is decreasing in k for k ≥ 1. �

emma 3. (i) k 0 ( n, ε) ≤ n + 1 and (ii) ˆ k ( n, ε) ≤ n . 

roof. (i) By (1) and Proposition 1 

π0 ( n, ε) = max 

1 ≤k≤ 1 
ε

k 
(
1 + ( n + 1) ε

)2 
( n + k + 1) 2 

nd it is maximized at k = min ( n + 1 , 1 ε ) . Hence k 0 ( n, ε) ≤ n + 1 . 
(ii) Let 

ˆ π1 ( n, ε) = max 

1 ≤k<n 
k 
(
π1 ( n − k , k ) − π0 ( n − k + 1 , k) 

)
nd 

ˆ π2 ( n, ε) = max 

k≥n 
k 
(
π1 (0 , k) − π0 (1 , k) 

)
hen ˆ π( n, ε) = max 

(
ˆ π1 ( n, ε) , ̂  π2 ( n, ε) 

)
. But k 

(
π1 (0 , k) − π0 (1 , k) 

)
is decreasing in k

 Lemma 2 ). This implies ˆ k ( n, ε) ≤ n . �

The next lemma characterizes both k 0 ( n , ε) and 

ˆ k ( n, ε) . 

emma 4. 

k 0 ( n, ε) = 

{ 

n + 1 if 0 < ε < 

1 
n +1 

1 
ε if 1 

n +1 ≤ ε < 1 
(11)

nd 

ˆ k ( n, ε) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

n if 0 < ε < f ( n ) 
˜ k ( n, ε) if f ( n ) ≤ ε ≤ 2 

n +1 
1 
ε if 2 

n +1 < ε < 1 
(12)

here 

f( n ) = 

n 3 + n 2 + 2 n + 4 + 

√ 

n 6 + 8 n 5 + 30 n 4 + 56 n 3 + 50 n 2 + 20 n + 4 

3 n 4 + 8 n 3 + 10 n 2 + 4 n − 4 
, 

˜ k ( n, ε) = { 2 n 3 ε + 10 n 2 ε + 16 nε + 4 n + 8 ε + 6 

−
√ 

4 n 6 ε2 + 34 n 5 ε2 + 119 n 4 ε2 + 4 n 4 ε + 220 n 3 ε2 + 26 n 3 ε + 227 n 2 ε2 + 62 n 2 ε + 124 nε2 + 4 n 2 + 64 nε + 28 ε2 + 12 n + 24 ε + 9 } / 

{ 3(2 n + 3) ε} . 
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Here 1 
ε ≤ ˜ k ( n, ε) ≤ n for f ( n ) ≤ ε ≤ 2 

n +1 and 

˜ k ( n, ε) is decreasing in ε. 

Proof. (11) follows from the proof of part (i) of Lemma 3 . We next analyze ˆ k ( n, ε) . 
By part (ii) of Lemma 3 , ˆ k ( n, ε) ≤ n . Then 

ˆ π( n, ε) = max 

1 ≤k≤n 
k 
(
π1 ( n − k , k ) − π0 ( n − k + 1 , k) 

)
= k 

(
(1 + ( n − k + 1) ε) 2 

( n + 1) 2 − (1 − kε) 2 

( n + 2) 2 

)

The first order condition is 

∂ ̂  π( n, ε) 
∂k 

= Dk 2 + Ek + F (13) 

where 

D = 

6 nε2 + 9 ε2 

( n + 1 ) 2 ( n + 2 ) 2 
> 0 , 

E = 

−4 n 

3 ε2 − 20 n 

2 ε2 − 32 nε2 − 8 nε− 16 ε2 − 12 ε
( n + 1 ) 2 ( n + 2 ) 2 

, 

F = 

n 

4 ε2 + 6 n 

3 ε2 + 2 n 

3 ε + 13 n 

2 ε2 + 10 n 

2 ε + 12 nε2 + 16 nε + 4 ε2 + 2 n + 8 ε + 3 
( n + 1 ) 2 ( n + 2 ) 2 

and 

E 

2 − 4 DF = 4 { ε2 (4 n 

6 ε2 + 34 n 

5 ε2 + 119 n 

4 ε2 + 4 n 

4 ε + 220 n 

3 ε2 + 26 n 

3 ε

+ 227 n 

2 ε2 + 62 n 

2 ε + 124 nε2 + 4 n 

2 + 64 nε + 28 ε2 + 12 n + 24 ε + 9) } / 
{ ( n + 1 ) 4 ( n + 2 ) 4 } > 0 

Let c 1 and c 2 be the solution in k of the quadratic function 

∂ ̂  π( n,ε) 
∂k = 0 . Then 

c 1 = { 2 n 3 ε + 10 n 2 ε + 16 nε + 4 n + 8 ε + 6 

−
√ 

4 n 6 ε2 + 34 n 5 ε2 + 119 n 4 ε2 + 4 n 4 ε + 220 n 3 ε2 + 26 n 3 ε + 227 n 2 ε2 + 62 n 2 ε + 124 nε2 + 4 n 2 + 64 nε + 28 ε2 + 12 n + 24 ε + 9 } / 
{ 3(2 n + 3) ε} 

c 2 = { 2 n 3 ε + 10 n 2 ε + 16 nε + 4 n + 8 ε + 6 

+ 

√ 

4 n 6 ε2 + 34 n 5 ε2 + 119 n 4 ε2 + 4 n 4 ε + 220 n 3 ε2 + 26 n 3 ε + 227 n 2 ε2 + 62 n 2 ε + 124 nε2 + 4 n 2 + 64 nε + 28 ε2 + 12 n + 24 ε + 9 } / 
{ 3(2 n + 3) ε} 

It can be easily verified that when ε≥ 0 and n ≥ 1, c 1 > 0. Next we compare c 1 with
1 
ε . 

1 
ε
− c 1 = 

s ( n, ε) − t ( n, ε) 
3(2 n + 3) ε (14) 

where 

s ( n, ε) = 

√ 

4 n 6 ε2 + 34 n 5 ε2 + 119 n 4 ε2 + 4 n 4 ε + 220 n 3 ε2 + 26 n 3 ε + 227 n 2 ε2 + 62 n 2 ε + 124 nε2 + 4 n 2 + 64 nε + 28 ε2 + 12 n + 24 ε + 9 
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a
 

 

B  

c

 

a  

 

b  

e

a  

(

I

T

I  

I
 

c  
nd 

t ( n, ε) = 2 n 

3 ε + 10 n 

2 ε + 16 nε + 8 ε− 2 n − 3 (15)

For ε≥ 0, s ( n , ε) > 0 and it can be easily verified that t ( n , ε) ≤ 0 iff ε ≤ 2 n +3 
2 ( n +1 ) ( n +2 ) 2 .

y (14) for ε ≤ 2 n +3 
2 ( n +1 ) ( n +2 ) 2 , c 1 ≤

1 
ε . If, however, ε > 

2 n +3 
2 ( n +1 ) ( n +2 ) 2 by (15) t ( n , ε) > 0. It

an be easily verified that 

(
s ( n, ε) 

)2 ≥
(
t ( n, ε) 

)2 iff 0 ≤ ε ≤ 2 
n + 1 (16)

nd for all n ≥ 1, in which case, again, c 1 ≤ 1 
ε . It can also be verified that 2 

n +1 >
2 n +3 

2 ( n +1 ) ( n +2 ) 2 for n ≥ 1. Therefore c 1 > 

1 
ε iff ε > 

2 
n +1 . Since the optimal k is bounded above

y 

1 
ε ( Proposition 1 ), for ε > 

2 
n +1 , 

ˆ k ( n, ε) = 

1 
ε . Next we analyze the case 0 ≤ ε ≤ 2 

n +1 (or
quivalently c 1 ≤ 1 

ε ). We first compare the value of 1 
ε and c 2 . 

1 
ε
− c 2 = 

−s ( n, ε) − t ( n, ε) 
3(2 n + 3) ε

s shown above, t ( n , ε) ≥ 0 iff ε ≥ 2 n +3 
2 ( n +1 ) ( n +2 ) 2 . For 2 n +3 

2 ( n +1 ) ( n +2 ) 2 ≤ ε ≤ 2 
n +1 , c 2 ≥

1 
ε . Since

 s ( n , ε)) 2 ≥ ( t ( n , ε)) 2 for 0 ≤ ε < 

2 n +3 
2 ( n +1 ) ( n +2 ) 2 , again c 2 ≥ 1 

ε . Thus for any ε ≤ 2 
n +1 , c 2 ≥

1 
ε . This together with (13) imply that ˆ π( n, ε) is maximized at k = c 1 . 

Finally we compare the value of c 1 with n . 

n − c 1 = 

s ( n, ε) − (2 n 

3 ε + 4 n 

2 ε + 7 εn + 4 n + 8 ε + 6) 
3(2 n + 3) ε

t can be easily verified that 

(
s ( n, ε) 

)2 − (2 n 

3 ε + 4 n 

2 ε + 7 εn + 4 n + 8 ε + 6) 2 

= (18 n 

5 + 75 n 

4 + 132 n 

3 + 114 n 

2 + 12 n − 36) ε2 

− (12 n 

4 + 30 n 

3 + 42 n 

2 + 84 n + 72) ε− (12 n 

2 + 36 n + 27) 

hus c 1 ≥n iff the last term ≤ 0. The solution of this quadratic inequality is 

n 

3 + n 

2 + 2 n + 4 −
√ 

n 

6 + 8 n 

5 + 30 n 

4 + 56 n 

3 + 50 n 

2 + 20 n + 4 
3 n 

4 + 8 n 

3 + 10 n 

2 + 4 n − 4 

≤ ε ≤ n 

3 + n 

2 + 2 n + 4 + 

√ 

n 

6 + 8 n 

5 + 30 n 

4 + 56 n 

3 + 50 n 

2 + 20 n + 4 
3 n 

4 + 8 n 

3 + 10 n 

2 + 4 n − 4 ≡ f ( n ) 

t can be easily verified that n 3 + n 2 +2 n +4 −
√ 

n 6 +8 n 5 +30 n 4 +56 n 3 +50 n 2 +20 n +4 
3 n 4 +8 n 3 +10 n 2 +4 n −4 < 0 for n ≥ 1.

t can also be verified that f ( n ) ≤ 2 
n +1 for n ≥ 1. 

Consequently, for 0 ≤ ε≤ f ( n ), n ≤ c 1 ≤ 1 
ε and 

ˆ k ( n, ε) = n ; for f ( n ) < ε ≤ 2 
n +1 , c 1 < n ,

 1 < 

1 
ε and 

ˆ k ( n, ε) = c 1 ; for 2 
n +1 ≤ ε ≤ 1 , 1 

ε < c 1 < n and 

ˆ k ( n, ε) = 

1 
ε . It is left to show
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that c 1 is decreasing in ε. We first compute the first order derivative of c 1 with respect
to ε. 
∂c 1 

∂ε
= { n 3 ε + 5 n 2 ε + 8 εn 

− 2 
√ 

4 n 6 ε2 + 34 n 5 ε2 + 119 n 4 ε2 + 4 n 4 ε + 220 n 3 ε2 + 26 n 3 ε + 227 n 2 ε2 + 62 n 2 ε + 124 nε2 + 4 n 2 + 64 εn + 28 ε2 + 12 n + 24 ε + 9 
+ 2 n + 4 ε + 3 } / 

{ 3 ε2 √ 4 n 6 ε2 + 34 n 5 ε2 + 119 n 4 ε2 + 4 n 4 ε + 220 n 3 ε2 + 26 n 3 ε + 227 n 2 ε2 + 62 n 2 ε + 124 nε2 + 4 n 2 + 64 εn + 28 ε2 + 12 n + 24 ε + 9 } 

It can be easily verified that ∂c 1 
∂ε < 0 for n ≥ 1 and ε> 0. The proof of Lemma 4 is

complete. �

We are now ready to characterize the equilibrium number of licensees in G u , for the
”lucky” innovator. 

Case 1: Suppose 0 ≤ ε ≤ min ( 1 
n +1 , f ( n )) , then k 0 ( n, ε) = n + 1 and 

ˆ k ( n, ε) = n . 

π0 ( n, ε) − ˆ π( n, ε) = ( n + 1) π1 ( n, n + 1) − n 

(
π1 (0 , k) − π0 (1 , k) 

)
= 

(5 n 

5 + 15 n 

4 + 19 n 

3 + 9 n 

2 + 4) ε2 − (6 n 

4 + 12 n 

3 + 14 n 

2 + 8 n − 8) ε + n 

3 − 3 n 

2 − 4 n + 4 
4( n + 1) 2 ( n + 2) 2 . 

(17) 

It is easy to verify that π0 ( n, ε) ≤ ˆ π( n, ε) iff

3 n 

4 + 6 n 

3 + 7 n 

2 + 4 n − 4 − 2 
√ 

n 

8 + 9 n 

7 + 31 n 

6 + 49 n 

5 + 29 n 

4 − 9 n 

3 − 16 n 

2 − 4 n 

5 n 

5 + 15 n 

4 + 19 n 

3 + 9 n 

2 + 4 

≤ ε ≤ 3 n 

4 + 6 n 

3 + 7 n 

2 + 4 n − 4 + 2 
√ 

n 

8 + 9 n 

7 + 31 n 

6 + 49 n 

5 + 29 n 

4 − 9 n 

3 − 16 n 

2 − 4 n 

5 n 

5 + 15 n 

4 + 19 n 

3 + 9 n 

2 + 4 

Let d 1 = 

3 n 4 +6 n 3 +7 n 2 +4 n −4 −2 
√ 

n 8 +9 n 7 +31 n 6 +49 n 5 +29 n 4 −9 n 3 −16 n 2 −4 n 
5 n 5 +15 n 4 +19 n 3 +9 n 2 +4 and 

d 2 = 

3 n 4 +6 n 3 +7 n 2 +4 n −4+2 
√ 

n 8 +9 n 7 +31 n 6 +49 n 5 +29 n 4 −9 n 3 −16 n 2 −4 n 
5 n 5 +15 n 4 +19 n 3 +9 n 2 +4 . We next show that 

d 1 < min ( 1 
n +1 , f ( n )) < d 2 . First observe that 

d 2 −
1 

n + 1 
= 

( n + 1) 
√ 

n 8 + 9 n 7 + 31 n 6 + 49 n 5 + 29 n 4 − 9 n 3 − 16 n 2 − 4 n − ( n 5 + 3 n 4 + 3 n 3 + 4 − n 2 ) 
1 
2 (5 n 5 + 15 n 4 + 19 n 3 + 9 n 2 + 4)( n + 1) 

. 

It can be easily verified that d 2 > 

1 
n +1 for n ≥ 1. Thus d 2 ≥ min ( 1 

n +1 , f ( n )) . Next observe
that 

1 
n + 1 

− d 1 = 

( n + 1) 
√ 

n 8 + 9 n 7 + 31 n 6 + 49 n 5 + 29 n 4 − 9 n 3 − 16 n 2 − 4 n + ( n 5 + 3 n 4 + 3 n 3 + 4 − n 2 ) 
1 
2 (5 n 5 + 15 n 4 + 19 n 3 + 9 n 2 + 4)( n + 1) 

> 0 

thus d 1 < 

1 
n +1 . The analytical comparison between the value of d 1 and f ( n ) is complicated.

The numerical comparison is shown in Fig. 2 . Form the figure, d 1 (blue) is less than f ( n )
for 1 ≤n ≤ 100. 

Since d 1 < min ( 1 
n +1 , f ( n )) < d 2 , for 0 ≤ ε< d 1 , π0 ( n, ε) ≥ ˆ π( n, ε) and k ∗2 ( n, ε) =

k 0 ( n, ε) = n + 1 . For d 1 ≤ ε ≤ min ( 1 
n +1 , f ( n )) , π0 ( n, ε) < ˆ π( n, ε) and k ∗2 ( n, ε) = 

ˆ k ( n, ε) =

n . 
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Fig. 2. Comparison between d 1 and f ( n ). 
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Case 2: Suppose 2 
n +1 ≤ ε < 1 , then k 0 ( n, ε) = 

ˆ k ( n, ε) = 

1 
ε and π0 ( n, ε) = ˆ π( n, ε) = ε.

learly k ∗2 ( n, ε) = 

1 
ε . 

Case 3: Suppose min ( 1 
n +1 , f ( n )) < ε < 

2 
n +1 . Consider first the case 1 

n +1 ≤ f ( n ) . By
emma 4 ˆ k ( n, ε) < 

1 
ε thus ˆ π( n, ε) > ε. Since k 0 ( n, ε) = 

1 
ε and π0 ( n, ε) = ε, ˆ π( n, ε) >

0 ( n, ε) . 
Consider next the case 1 

n +1 > f ( n ) . (i) Suppose 1 
n +1 ≤ ε < 

2 
n +1 , then the previous

rgument applies and ˆ π( n, ε) > π0 ( n, ε) . (ii) Suppose f ( n ) < ε < 

1 
n +1 , k 

0 ( n, ε) = n + 1
nd 

ˆ k ( n, ε) = 

˜ k ( n, ε) . We next compare π0 ( n , ε) and ˆ π( n, ε) in this case. First observe
hat ˜ k ( n, ε) < n for f ( n ) < ε < 

1 
n +1 , thus ˆ π( n, ε) > n ( π1 (0 , n ) − π0 (1 , n )) . If we can show

hat 

n ( π1 (0 , n ) − π0 (1 , n )) > ( n + 1) π1 ( n, n + 1) (18)

hen the proof is complete. This is indeed true since (18) holds iff d 1 ≤ ε≤ d 2 and we have
hown that d 1 ≤ f ( n ) and d 2 ≥ 1 

n +1 . Denote g( n ) = max ( d 1 , 0) , Proposition 3 is complete.

.4. Proof of π1 ( n − k 1 , k) − π0 ( n − k 1 + 1 , k) being increasing in k 1 

Let m = n − k 1 , we will show that π1 ( m, k) − π0 ( m + 1 , k) is decreasing in m . 

π1 ( m, k) − π0 ( m + 1 , k) = 

(1 + ( m + 1) ε) 2 

( m + k + 1) 2 − (1 − kε) 2 

( m + k + 2) 2 
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The first order condition (using Maple) is 

∂( π1 ( m, k) − π0 ( m + 1 , k)) 
∂m 

= Gε2 + Hε + I 

where 

G = { 2 k 5 + 8 k 4 m + 12 k 3 m 

2 + 8 k 2 m 

3 + 2 km 

4 + 8 k 4 + 30 k 3 m + 36 k 2 m 

2 

+ 14 k m 

3 + 18 k 3 + 54 k 2 m + 36 k m 

2 + 26 k 2 + 40 mk + 16 k } / 
{ ( m + k + 1 ) 3 ( m + 2 + k ) 3 } > 0 

H = {−2 k 4 − 8 k 3 m − 12 k 2 m 

2 − 8 km 

3 − 2 m 

4 − 2 k 3 − 18 k 2 m − 30 km 

2 − 14 m 

3 

− 36 mk − 36 m 

2 − 12 k − 40 m − 16 } / 
{ ( m + k + 1 ) 3 ( m + 2 + k ) 3 } 

and 

I = 

−6 k 2 − 12 mk − 6 m 

2 − 18 k − 18 m − 14 
( m + k + 1 ) 3 ( m + 2 + k ) 3 

Therefore ∂( π1 ( m,k) −π0 ( m +1 ,k)) 
∂m 

is in quadratic in ε with G > 0. 
The equation 

∂( π1 ( m,k) −π0 ( m +1 ,k)) 
∂m 

= 0 has two solutions in ε. 

ε1 = −
3 k 2 + 6 mk + 3 m 

2 + 9 k + 9 m + 7 
k 4 + 4 k 3 m + 6 k 2 m 

2 + 4 km 

3 + m 

4 + 4 k 3 + 15 k 2 m + 18 km 

2 + 7 m 

3 + 9 k 2 + 27 mk + 18 m 

2 + 13 k + 20 m + 8 
< 0 

and 

ε2 = 

1 
k 
> 0 

Therefore for 0 < ε ≤ 1 
k , 

∂( π1 ( m,k) −π0 ( m +1 ,k)) 
∂m 

< 0 and π1 ( m, k) − π0 ( m + 1 , k) is decreas-
ing in m . Since m = n − k 1 , π1 ( n − k 1 , k) − π0 ( n − k 1 + 1 , k) is increasing in k 1 . 

A.5. The highest equilirbium payoff of the innovator in UA 

The highest equilibrium payoff of the innovator in G u is 

π∗
u ( n, ε) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

( n + 1) π1 ( n, n + 1) if 0 < ε < g( n ) 
n ( π1 (0 , n ) − π0 (1 , n )) if g( n ) ≤ ε ≤ f ( n ) 
˜ k 
(
π1 ( n − ˜ k , ̃  k ) − π0 ( n − ˜ k + 1 , ̃  k ) 

)
if f ( n ) < ε < 

2 
n +1 

ε if 2 
n +1 ≤ ε < 1 . 

(19) 

where ˜ k = 

˜ k ( n, ε) . 
Proof. Follows immediately from Proposition 3 . �
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.6. Equilirbium licensing strategy in NUA 

The unique equilibrium licensing strategy of the innovator in G nu is 
(i) For n ≥ 3 

k n ∗1 ( n, ε) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

n − 1 if 0 < ε ≤ 2 
3 n −5 

n +1 
4 + 

1 
2 ε if 2 

3 n −5 ≤ ε ≤ 2 
n +1 

1 
ε if 2 

n +1 ≤ ε < 1 , 
(20)

k n ∗2 ( n, ε) = 

{ 

2( n +2 ε) 
2 nε+1 − ( n − 1) if 0 < ε ≤ 1 

2 n −4 

0 if 1 
2 n −4 ≤ ε < 1 . 

(21)

(ii) For n = 2 

k n ∗1 (2 , ε) = 1 , (22)

k n ∗2 (2 , ε) = 

{ 

3 
4 ε+1 if 0 < ε ≤ 1 

2 
1 
ε − 1 if 1 

2 ≤ ε < 1 . 
(23)

ro of. By Prop osition 1 , we fo cus only on the case where k 1 + k 2 ≤ ε. The innovator
olves 

max 

k 1 ,k 2 

πD ︷ ︸︸ ︷ 
k 1 ( π1 ( n − k 1 , k 1 + k 2 ) − π0 ( n − k 1 , k 1 + k 2 )) + k 2 π1 ( n − k 1 , k 1 + k 2 ) 

.t. 

0 ≤ k 1 ≤ n − 1 
0 ≤ k 2 

k 1 + k 2 ≤
1 
ε

(24)

πD 

= − ( k 2 ε2 + 2 nε2 + 2 ε2 ) k 2 1 
( n + k 2 + 1) 2 

− ( k 2 2 ε
2 + 2 k 2 nε2 − n 

2 ε2 + 2 k 2 ε2 − 2 nε2 − 2 nε− ε2 − 2 ε) k 1 
( n + k 2 + 1) 2 

+ 

k 2 n 

2 ε2 + 2 k 2 nε2 + 2 k 2 nε + k 2 ε
2 + 2 k 2 ε + k 2 

( n + k 2 + 1) 2 

Note first that πD 

is continuous on k 1 and k 2 . Moreover, for any k 2 , πD 

is quadratic in
 1 . Denote ( k ∗1 , k ∗2 ) the optimal choice of the innovator. Given any k 2 , let k 1 ( k 2 ) be the
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maximizer of πD 

. Then 

k 1 ( k 2 ) = min 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

−k 2 2 ε + (2 nε + 2 ε) k 2 − n 

2 ε− 2 nε− 2 n − ε− 2 
2 ε( k 2 + 2 n + 2) ︸ ︷︷ ︸ 

k s 1 

, n − 1 , 1 
ε
− k 2 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

It can be easily verified that 

k s 1 < n − 1 iff k 2 > 

−2 nε + 

√ 

ε( n 

2 ε + 2 nε + 2 n + 5 ε + 2) 
ε︸ ︷︷ ︸ 
c 1 

and 

k s 1 < 

1 
ε
− k 2 iff k 2 < 

2 − nε− ε

ε︸ ︷︷ ︸ 
c 2 

It can also be verified that c 1 ≤ c 2 iff ε ≤ 1 
2 . We first analyze the case 0 < ε ≤ 1 

2 . �

Case 1. 0 < ε < 

1 
2 

Subcase 1.1: Suppose k 2 ≤ c 1 , then n − 1 < k s 1 < 

1 
ε − k 1 and k 1 ( k 2 ) = n − 1 . Substi-

tuting k 1 in πD 

with n − 1 , 

π1 
D 

= − ( n − 1) ε2 k 2 2 + (2 n 

2 ε2 − 4 nε2 − 2 nε− 2 ε2 − 2 ε− 1) k 2 + ε( n − 1)( n + 1)( nε− 3 ε− 2) 
( n + k 2 + 1) 2 

It can be easily verified that ∂π
1 
D 

∂k 2 
is decreasing in k 2 . Let ˜ k 2 be the solution of ∂π

1 
D 

∂k 2 
= 0 .

Then 

˜ k 2 = 

2 nε + n + 4 ε + 1 − 2 n 

2 ε

2 nε + 1 

It can be verified that ˜ k 2 ≤ c 1 iff ε ≤ 1 
2 thus πD 

is maximized at k 2 = 

˜ k 2 for k 2 ≤ c 1 . 
Subcase 1.2: Suppose c 1 ≤ k 2 ≤ c 2 , then k s 1 < n − 1 , k s 1 < 

1 
ε − k 2 and k 1 ( k 2 ) = k s 1 . Sub-

stituting k 1 in πD 

with k s 1 , 

π2 
D 

= 

k 2 2 ε
2 + (2 nε2 + 2 ε2 ) k 2 + n 

2 ε2 + 2 nε2 + 4 nε + ε2 + 4 ε + 4 
4( k 2 + 2 n + 2) 

It can be verified that π2 
D 

is decreasing in k 2 for 0 ≤ k 2 ≤ c 2 , thus πD 

is maximized at
k 2 = c 1 for c 1 ≤ k 2 ≤ c 2 . 

Subcase 1.3: Suppose c 2 ≤ k 2 , then 

1 
ε − k 2 < k s 1 < n − 1 and k 1 ( k 2 ) = 

1 
ε − k 2 . Since the

innovator’s payoff is the same for all ( k 1 , k 2 ) s.t. k 1 + k 2 = 

1 
ε , for any k 2 ≥ c 2 the innovator

obtains the same payoff. By the assumption that the incumbent has the priority in case
of a tie, πD 

is maximized at k 2 = c 2 in the region k 2 ≥ c 2 . 
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To summarize, for k 2 ≤ c 1 , πD 

is maximized at ( k 1 = n − 1 , k 2 = 

˜ k 2 ) ; for k 2 ∈ [ c 1 , c 2 ],
D 

is maximized at ( k 1 = k s 1 , k 2 = c 1 ) ; for k 2 ≥ c 2 , πD 

is maximized at ( k 1 = 

1 
ε − c 2 , k 2 =

 2 ) . Since πD 

is continuous in k 2 , πD 

is maximized at k 2 = max ( ̃  k 2 , 0) . 
For n ≥ 3, it can be easily verified that ˜ k 2 ≥ 0 iff ε ≤ 1 

2 n −4 . Then 

k ∗2 ( n, ε) = 

{ 

2 nε+ n +4 ε+1 −2 n 2 ε
2 nε+1 if 0 < ε < 

1 
2 n −4 

0 if 1 
2 n −4 ≤ ε

Next we analyze k ∗1 . Suppose 0 < ε < 

1 
2 n −4 . Since k ∗2 = 

˜ k 2 and 

˜ k 2 < c 1 (for 0 ≤ ε < 

1 
2 ),

 

∗
2 < c 1 . Following the analysis in subcase 1.1, k 1 ( k ∗2 ) = n − 1 . Suppose next 1 

2 n −4 ≤ ε,

 1 ( k ∗2 ) then depends on the relation between 0, c 1 and c 2 . (i) If 0 ≤ c 1 ( 1 
2 n −4 ≤ ε ≤ 2 

3 n −5 ),
ollowing the analysis of subcase 1.1, k 1 ( k ∗2 ) = n − 1 . (ii) If c 1 < 0 ≤ c 2 ( 2 

3 n −5 ≤ ε ≤ 2 
n +1 ),

ollowing the analysis of subcase 1.2, k 1 ( k ∗2 ) = k s 1 | k 2 =0 = 

n +1 
4 + 

1 
2 ε . (iii) If c 2 < 0 ( 2 

n +1 <

), following the analysis of subcase 1.3, k 1 ( k ∗2 ) = 

1 
ε . Thus for n ≥ 3 

k ∗1 ( n, ε) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

n − 1 if 0 < ε < 

2 
3 n −5 

n +1 
4 + 

1 
2 ε if 2 

3 n −5 ≤ ε ≤ 2 
n +1 

1 
ε if 2 

n +1 < ε < 

1 
2 

k ∗2 ( n, ε) = 

{ 

2 nε+ n +4 ε+1 −2 n 2 ε
2 nε+1 if 0 < ε < 

1 
2 n −4 

0 if 1 
2 n −4 ≤ ε < 

1 
2 

Consider next n = 2 . It can be easily verified that ˜ k 2 > 0 . Therefore k ∗2 (2 , ε) = 

˜ k 2
nd k ∗2 (2 , ε) < c 1 (since ˜ k 2 < c 1 for 0 ≤ ε < 

1 
2 ). Following subcase 1.1 k ∗1 (2 , ε) = 1 . The

nnovator’s optimal payoff is obtained for k ∗1 = 1 and k ∗2 = 

˜ k 2 | n =2 = 

3 
4 ε+1 . 

ase 2. 1 
2 ≤ ε < 1 

In this case c 1 > c 2 , ˜ k 2 > 

1 
2 and 

˜ k 2 > c 1 . 
Subcase 2.1: Suppose k 2 ≤ c 2 , then n − 1 < k s 1 ≤ 1 

ε − k 2 and k 1 ( k 2 ) = n − 1 . Following
imilar argument as in Subcase 1.1, πD 

is maximized at min ( ̃  k 2 , c 2 ) . Since ˜ k 2 > c 1 and
 1 > c 2 , ˜ k 2 > c 2 . Therefore πD 

is maximized at k 1 = n − 1 and k 2 = c 2 . 
Subcase 2.2: Suppose c 2 ≤ k 2 ≤ c 1 , then k s 1 ≥ n − 1 , k s 1 ≥ 1 

ε − k 2 and k 1 ( k 2 ) = min ( n −
 , 1 ε − k 2 ) . It can be easily verified that c 2 ≤ 1 

ε − n + 1 ≤ c 1 for ε ≥ 1 
2 . (i) Suppose first

 2 ≤ k 2 ≤ 1 
ε − n + 1 (or equivalently n − 1 ≤ 1 

ε − k 2 ). Then k 1 ( k 2 ) = n − 1 . Following
imilar argument as in Subcase 1.1, πD 

is maximized at min ( ̃  k 2 , 
1 
ε − n + 1) . Since ˜ k 2 >

 1 ≥ 1 
ε − n + 1 , πD 

is maximized at ( k 1 = n − 1 , k 2 = 

1 
ε − n + 1) . (ii) Suppose next 1 

ε −
 + 1 ≤ k 2 ≤ c 1 (or equivalently n − 1 ≥ 1 

ε − k 2 ) then k 1 ( k 2 ) = 

1 
ε − k 2 . The innovator’s

ayoff is maximized at k 1 + k 2 = 

1 
ε . 

Subcase 2.3: Suppose k 2 ≥ c 1 , then 

1 
ε − k 2 < k s 1 < n − 1 and k 1 ( k 2 ) = 

1 
ε − k 2 . The in-

ovator’s payoff is maximized again at k 1 + k 2 = 

1 
ε . 
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Consider first n ≥ 3. Since ε ≥ 1 
2 , n − 1 ≥ 1 

ε holds. Therefore Subcase 2.1 and part (i)
of Subcase 2.2 are irrelevant. In this case πD 

is maximized at k 1 + k 2 = 

1 
ε . By assumption,

in this case k ∗1 = 

1 
ε and k ∗2 = 0 . 

Consider next n = 2 . Since 1 
2 ≤ ε ≤ 1 , n − 1 ≤ 1 

ε holds. Therefore Part (ii) of Subcase
2.2 and Subcase 2.3 are irrelevant. Since πD 

is continuous on k 2 , combining Subcases 2.1
and Part (i) of Subcase 2.2 πD 

is maximized at ( k 1 = n − 1 , k 2 = 

1 
ε − n + 1) . 

A.7. Total number of licensees in NUA 

Let K 

∗
nu = k n ∗1 + k n ∗2 . For n ≥ 3 

K 

∗
nu ( n, ε) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

2( n +2 ε) 
2 nε+1 if 0 < ε ≤ 1 

2 n −4 

n − 1 if 1 
2 n −4 ≤ ε ≤ 2 

3 n −5 
n +1 

4 + 

1 
2 ε if 2 

3 n −5 ≤ ε ≤ 2 
n +1 

1 
ε if 2 

n +1 ≤ ε < 1 , 

For n = 2 

K 

∗
nu ( n, ε) = 

{ 

3 
4 ε+1 + 1 if 0 < ε ≤ 1 

2 
1 
ε if 1 

2 ≤ ε < 1 

Proof. Follows immediately from A.6 . �

A.8. The innovator’s equilibrium payoff in NUA 

The innovator’s equilibrium payoff in G nu is: 
For n ≥ 3 

π∗
nu ( n, ε) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

4 ε2 +4 nε+1 
4( n +1) if 0 < ε ≤ 1 

2 n −4 
( n −1)( −( n −3) ε2 +2 ε) 

n +1 if 1 
2 n −4 < ε ≤ 2 

3 n −5 
( nε+ ε+2) 2 

8( n +1) if 2 
3 n −5 ≤ ε ≤ 2 

n +1 

ε if 2 
n +1 ≤ ε < 1 . 

For n = 2 

π∗
nu ( n, ε) = 

{ 

4 ε2 +4 nε+1 
4( n +1) if 0 < ε ≤ 1 

2 

ε if 1 
2 ≤ ε < 1 . 

(25) 

Proof. Follows from (5) and A.6 . �

A.9. Proof of Proposition 6 

If n = 2 , comparing (19) and (25) , it is easy to verify that π∗
nu (2 , ε) ≤ π∗

u (2 , ε) for
0 < ε≤ 1. We next consider the case n ≥ 3. 
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Fig. 3. Comparison between 1 
2 n −4 and g ( n ). 
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emma 5. Consider the case n ≥ 3 . (i) If ε≤ g ( n ), π∗
nu ( n, ε) > π∗

u ( n, ε) . (ii) If 1 
2 n −4 ≤ ε <

2 
n +1 , π

∗
nu ( n, ε) < π∗

u ( n, ε) . (iii) If 2 
n +1 ≤ ε < 1 , π∗

nu ( n, ε) = π∗
u ( n, ε) . 

roof. (i) If ε< g ( n ), in UA the innovator’s highest payoff is ˆ π = ( n + 1) π1 ( n, n + 1)
hich is obtained when he auctions off n + 1 licenses and all winners are entrants. In
UA if the innovator chooses k 1 = 0 and k 2 = n + 1 he obtains ˆ π. But he can obtain
ore by choosing other combinations of ( k 1 , k 2 ). It can be shown that g( n ) < 

1 
2 n −4 for

 ≥ 3 (the analytic proof is difficult, see Fig. 3 for a numerical comparison). Thus by
.6 when ε< g ( n ), k ∗1 ( n, ε) > 0 and π∗

nu > ˆ π. 
(ii) If 1 

2 n −4 ≤ ε < 

2 
n +1 then in NUA k ∗2 ( n, ε) = 0 . Since the advantage of NUA on UA

ies only on the innovator’s ability to charge for a license a higher price to entrants than
o incumbent firms, this advantage disappears when k ∗2 ( n, ε) = 0 . Moreover, for any ( k 1 ,
 2 ) an incumbent’s willingness to pay in NUA is π1 ( n − k 1 , k 1 + k 2 ) − π0 ( n − k 1 , k 1 + k 2 )
hile it can be as high as π1 ( n − k 1 , k 1 + k 2 ) − π0 ( n − k 1 + 1 , k 1 + k 2 ) in UA (incumbent
ay be willing to pay more to limit entry). Thus π∗

nu ( n, ε) ≤ π∗
u ( n, ε) . Since K 

∗
nu < 

1 
ε ,

∗
nu ( n, ε) < π∗

u ( n, ε) . 
(iii) If 2 

n +1 ≤ ε < 1 the innovator auctions off in total 1 ε licenses in both UA and NUA.
y Proposition 1 , the innovator obtains the same payoff which is the total industry profit

in both auctions. �
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Next we focus on the analysis of g( n ) < ε < 

1 
2 n −4 . Clearly 

1 
2 n −4 < 

2 
3 n −5 < 

2 
n +1 for

n ≥ 3. Thus in G nu , k ∗1 ( n, ε) = n − 1 and k ∗2 ( n, ε) = 

2 nε+ n +4 ε+1 −2 n 2 ε
2 nε+1 . In G u , π∗

u ( n, ε) de-
pends on whether ε≤ f ( n ) or ε> f ( n ). 

Case 1: Suppose f ( n ) ≤ 1 
2 n −4 (this inequality holds for n ≤ 8). Then 

π∗
u ( n, ε) = 

{ 

n ( π1 (0 , n ) − π0 (1 , n )) if g( n ) ≤ ε ≤ f ( n ) 
˜ k 
(
π1 ( n − ˜ k , ̃  k ) − π0 ( n − ˜ k + 1 , ̃  k ) 

)
if f ( n ) < ε < 

1 
2 n −4 

We first analyze g ( n ) ≤ ε≤ f ( n ). 

π∗
nu − π∗

u = 

(4 n 

5 + 8 n 

4 + 4 n 

3 + 4 n 

2 + 16 n + 16) ε2 

4( n + 1) 2 ( n + 2) 2 

− (4 n 

4 + 4 n 

3 + 8 n 

2 + 16 n ) ε
4( n + 1) 2 ( n + 2) 2 

+ 

n 

3 − 3 n 

2 − 4 n + 4 
4( n + 1) 2 ( n + 2) 2 

It can be easily verified that π∗
nu < π∗

u iff

n 

4 + n 

3 + 2 n 

2 −
√ 

3 n 

7 + 14 n 

6 + 18 n 

5 + 7 n 

4 + 24 n 

3 + 40 n 

2 − 16 + 4 n 

2( n 

5 + 2 n 

4 + n 

3 + n 

2 + 4 n + 4) 

< ε < 

n 

4 + n 

3 + 2 n 

2 + 

√ 

3 n 

7 + 14 n 

6 + 18 n 

5 + 7 n 

4 + 24 n 

3 + 40 n 

2 − 16 + 4 n 

2( n 

5 + 2 n 

4 + n 

3 + n 

2 + 4 n + 4) 

Let e 1 = 

n 4 + n 3 +2 n 2 −
√ 

3 n 7 +14 n 6 +18 n 5 +7 n 4 +24 n 3 +40 n 2 −16 +4 n 
2( n 5 +2 n 4 + n 3 + n 2 +4 n +4) and 

e 2 = 

n 4 + n 3 +2 n 2 + 

√ 

3 n 7 +14 n 6 +18 n 5 +7 n 4 +24 n 3 +40 n 2 −16 +4 n 
2( n 5 +2 n 4 + n 3 + n 2 +4 n +4) . Fig. 4 compare the value of 

f ( n ), g ( n ), e 1 and e 2 . Note that n ∈ [3, 8] since in this section we deal with n ≥ 3 and
f ( n ) ≤ 1 

2 n −4 . 
It can be easily verified that g ( n ) and e 1 intersect at g( n ) = e 1 = 0 . Thus π∗

nu > π∗
u 

for g ( n ) ≤ ε< e 1 and π∗
nu ≤ π∗

u for e 1 ≤ ε≤ f ( n ). 
Next consider the case f ( n ) < ε < 

1 
2 n −4 . Again, the analytic comparison between π∗

u 

and π∗
nu is difficult and Fig. 5 shows that π∗

u ( n, ε) − π∗
nu ( n, ε) ≥ 0 numerically. 

To summarize, if f ( n ) ≤ 1 
2 n −4 , π

∗
nu > π∗

u for g ( n ) ≤ ε< e 1 and π∗
nu ≤ π∗

u for e 1 ≤ ε ≤
1 

2 n −4 . 
Case 2: Suppose f ( n ) > 

1 
2 n −4 (this inequality holds for n ≥ 9). Clearly for g( n ) < ε <

1 
2 n −4 , π

∗
u ( n, ε) = n ( π1 (0 , n ) − π0 (1 , n )) . Again π∗

nu < π∗
u iff e 1 < ε< e 2 . Fig. 6 shows that

e 2 > 

1 
2 n −4 > e 1 > g ( n ) numerically. Clearly π∗

nu > π∗
u for g ( n ) ≤ ε< e 1 and π∗

nu ≤ π∗
u for

e 1 ≤ ε < 

1 
2 n −4 . Let h ( n ) = max (0 , e 1 ) , Proposition 6 follows. 
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Fig. 4. Comparison between f ( n ), g ( n ), e 1 and e 2 . 

Fig. 5. The value of π∗
u ( n, ε) − π∗

nu ( n, ε) . 
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.10. Entry Vs. no entry 

Our next goal is to compare our results with the existing literature on optimal licensing
here entry is excluded. As shown in previous sections, UA has continuum of equilibrium
oints and there is no obvious way to predict which equilibrium will emerge. Therefore
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Fig. 6. Comparison between 1 
2 n −4 , g ( n ), e 1 and e 2 . 

 

 

 

 

 

 

 

we base our study on the comparison between G 0 and G nu , where G 0 is the game defined
similarly to G nu , but where entry is excluded. 

Suppose bidders do not use dominated strategies. The willingness to pay of each bidder
in G 0 ( k ), k ≥ 1, is uniquely determined and so is the innovator’s equilibrium payoff. The
next proposition characterizes the innovator’s optimal licensing strategy in G 0 . 

Proposition 7. The unique equilibrium licensing strategy of the innovator in G 0 is: 
(i) For n ≥ 3 

k ∗0 ( n, ε) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

n − 1 if 0 < ε < 

2 
3 n −5 

n +1 
4 + 

1 
2 ε if 2 

3 n −5 ≤ ε < 

2 
n +1 

1 
ε if 2 

n +1 ≤ ε < 1 . 
(26) 

(ii) For n ≤ 2 
k ∗0 ( n, ε) = n − 1 . 

The proof follows from Kamien et al. (1992) . 
Observe that by Proposition 7 , k ∗0 ( n, ε) = k n ∗1 ( n, ε) where k n ∗1 ( n, ε) , the optimal num-

ber of incumbent licensees in G nu , is given in A.6 . This is not very surprising in light
of Corollary 5 . By A.6 and Proposition 7 for less significant innovations ( 0 < ε ≤ 1 

2 n −4 ),
k ∗0 ( n, ε) = k ∗1 ( n, ε) and k ∗2 > 0 . In this case G nu results in a higher diffusion of technology
and bigger post-innovation number of firms. The difference in post-innovation number of 
firms is larger for less significant magnitude of innovation. 

The next proposition characterizes the innovator’s revenue and the post-innovation 

market price in G 0 . 
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roposition 8. Consider the game G 0 . (i) the innovator’s equilibrium payoff is 
For n ≥ 3 

π∗
0 ( n, ε) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

( n −1)( −( n −3) ε2 +2 ε) 
n +1 if 0 < ε ≤ 2 

3 n −5 
( nε+ ε+2) 2 

8( n +1) if 2 
3 n −5 ≤ ε ≤ 2 

n +1 

ε if 2 
n +1 ≤ ε < 1 . 

For n ≤ 2 

π∗
0 ( n, ε) = 

( n − 1)( −( n − 3) ε2 + 2 ε) 
n + 1 . 

(ii) The post-innovation market price is 
For n ≥ 3 

p ∗0 ( n, ε) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

c + 

1 −( n −1) ε
n +1 if 0 ≤ ε ≤ 2 

3 n −5 

c + 

2 −( n +1) ε
4( n +1) if 2 

3 n −5 ≤ ε ≤ 2 
n +1 

c if 2 
n +1 ≤ ε < 1 . 

For n ≤ 2 
p ∗0 ( n, ε) = c + 

1 − ( n − 1) ε
n + 1 . 

roof. Follows from Proposition 7 �

orollary 1. Suppose n ≥ 3 . π∗
nu ( n, ε) − π∗

0 ( n, ε) and p ∗0 ( n, ε) − p ∗nu ( n, ε) are both decreas-
ng in n and decreasing in ε. 

roof. See A.11 of the Appendix . �

Corollary 1 asserts that the increment in the innovator’s revenue from allowing entry
s smaller when there are larger number of incumbent firms or when the magnitude of the
nnovation is more significant. The same result holds true for the difference in the post-
nnovation market price. It is shown in Corollary 2 below that these differences vanishes
f either n or ε is sufficiently large. 

orollary 2. Al lowing entry wil l not change the innovator’s revenue nor the social welfare
f either (i) ε> 0 and n is sufficiently large, or (ii) n ≥ 3 and ε is sufficiently large. 

roof. By A.6 and Proposition 7 k ∗0 ( n, ε) = k n ∗1 ( n, ε) for any n and ε, k n ∗2 ( n, ε) = 0 for
 ≥ 3 and 

1 
2 n −4 ≤ ε < 1 . �

Corollary 2 asserts that for any ε> 0 there is no difference in price nor in the innovator’s
ayoff between G nu and G 0 , for sufficiently large n . This is because the innovator sells li-
enses to entrants only if he sells licenses to all (but one) incumbent firms ( Proposition 5 ).
or a market with large number of incumbents the innovator will not sell licenses to en-
rants even when entry is allowed. For any n ≥ 3, the same result holds for sufficiently
arge ε. 
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Next we characterize the market structure that provides the highest incentive to in- 
novate in G 0 . 

Proposition 9. An oligopoly industry with size n = max (3 , 2 
√ 

2 + 

1 
ε − 1) maximizes the

revenue of the innovator in G 0 . 

Proof. See A.12 of the Appendix . �

Proposition 9 asserts that when entry is excluded, the incentive to innovate is maxi- 
mized when the market is oligopoly and the optimal size is decreasing in the magnitude
of the innovation (with at least 3 firms). If however the market is open to entry the
incentive to innovate is maximized in a monopoly market ( Proposition 4 ). 

A.11. Proof of Corollary 1 

(i) For n ≥ 3 

π∗
nu ( n, ε) − π∗( n, ε) = 

{ 

(1 −(2 n −4) ε) 2 
4( n +1) if 0 ≤ ε ≤ 1 

2 n −4 

0 if 1 
2 n −4 ≤ ε < 1 , 

(27) 

Let E = 

(1 −(2 n −4) ε) 2 
4( n +1) . 

∂E 

∂ε
= 

((2 n − 4) ε− 1)( n − 2) 
n + 1 

Observe that (27) is continuous in ε and 

∂E 

∂ε ≤ 0 for 0 < ε ≤ 1 
2 n −4 . Thus for any n ≥ 3,

π∗
nu − π∗ is non-increasing in ε for 0 < ε< 1. 
Next observe that for 0 < ε< 1 

π∗
nu ( n, ε) − π∗( n, ε) = 

{ 

(1 −(2 n −4) ε) 2 
4( n +1) if 3 ≤ n ≤ 1 

2 ε + 2 
0 if 1 

2 ε + 2 ≤ n , 
(28) 

and (28) is continuous in n . Since 

∂E 

∂n 

= 

((2 n − 4) ε− 1)(2 nε + 8 ε + 1) 
4( n + 1) 2 , 

π∗
nu − π∗ is non-increasing in n for n ≥ 3. 
(ii) For n ≥ 3 

p ∗( n, ε) − p ∗nu ( n, ε) = 

{ 1 −(2 n −4) ε
2( n +1) if 0 ≤ ε ≤ 1 

2 n −4 

0 if 1 
2 n −4 ≤ ε < 1 , 

(29) 

Clearly for any n ≥ 3, p ∗( n, ε) − p ∗nu ( n, ε) is non-increasing in ε. 
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For 0 < ε< 1, 

p ∗( n, ε) − p ∗nu ( n, ε) = 

{ 1 −(2 n −4) ε
2( n +1) if 3 ≤ n ≤ 1 

2 ε+2 

0 if 1 
2 ε + 2 ≤ n , 

(30)

Let F = 

1 −(2 n −4) ε
2( n +1) It can be easily verified that 

∂F 

∂n 

= − 6 ε + 1 
( n + 1) 2 

ince (30) is continuous in n and 

∂F 
∂n < 0 , (30) is non-increasing in n for n ≥ 3. 

.12. Proof of Proposition 9 

By Proposition 8 , for n ≥ 3 

π∗
0 ( n, ε) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

( n −1)( −( n −3) ε2 +2 ε) 
n +1 if 0 < ε ≤ 2 

3 n −5 
( nε+ ε+2) 2 

8( n +1) if 2 
3 n −5 ≤ ε ≤ 2 

n +1 

ε if 2 
n +1 ≤ ε < 1 . 

For n ≤ 2 

π∗
0 ( n, ε) = 

( n − 1)( −( n − 3) ε2 + 2 ε) 
n + 1 . (31)

Consider first n ≥ 3. First note that for any ε ≥ 1 
2 , π

∗
0 = ε regardless of the value of n .

e next focus on 0 < ε < 

1 
2 . 

Subcase 1: Suppose n < 

2 
3 ε + 

5 
3 (or equivalently 0 < ε < 

2 
3 n −5 ). Denote 

π∗1 
0 = 

ε( n − 1)(3 ε + 2 − nε) 
n + 1 . 

t can be easily verified that 

∂π∗1 
0 

∂n 

= 

ε( −n 

2 ε− 2 nε + 7 ε + 4) 
( n + 1) 2 , 

∂π∗1 
0 

∂n 

> 0 if 0 ≤ n < 2 
√ 

2 + 

1 
ε
− 1 

nd 

∂π∗1 
D 

∂n 

≤ 0 if n ≥ 2 
√ 

2 + 

1 
ε
− 1 

enote n 

∗1 = 2 
√ 

2 + 

1 
ε − 1 . It can be easily verified that 3 < n 

∗1 < 

2 
3 ε + 

5 
3 for 0 < ε < 

1 
2 .

herefore 3 < n 

∗1 < 

2 
3 ε + 

5 
3 for 0 < ε ≤ 1 

3 n −5 and n 

∗1 is the maximizer of π∗
0 for 3 < n <

2 
3 ε + 

5 
3 . 
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Subcase 2: Suppose 2 
3 ε + 

5 
3 ≤ n ≤ 2 

ε − 1 (or equivalently 

2 
3 n −5 ≤ ε ≤ 2 

n +1 ). Deonte 

π∗2 
0 = 

( nε + ε + 2) 2 

8( n + 1) . 

It can be easily verified that 

∂π∗2 
0 

∂n 

= 

ε2 n 

2 + 2 ε2 n + ε2 − 4 
8( n + 1) 2 

and 

∂π∗2 
0 

∂n 

< 0 for 0 ≤ n < 

2 
ε
− 1 . 

Therefore n 

∗2 = 

2 
3 ε + 

5 
3 is the maximizer of π∗2 

0 for 2 
3 ε + 

5 
3 ≤ n ≤ 2 

ε − 1 . 
Subcase 3: Suppose 2 

ε − 1 ≤ n ( 2 
n +1 ≤ ε ≤ 1 

2 ). Then π∗
0 ( n, ε) = ε and the innovator’s

payoff is the same for any 2 
ε − 1 ≤ n . 

Combining subcases 1–3, for n ≥ 3, since π∗
0 is continuous in n , n 

∗ = 2 
√ 

2 + 

1 
ε − 1 is

the maximizer of π∗
0 . Let π∗

D 

be the innovator’s equilibrium payoff when n = n 

∗. 

π∗
D 

= 

⎧ ⎨ 

⎩ 

2 ε(2 ε+1 −
√ 

ε(2 ε+1) )( 
√ 

ε(2 ε+1) −ε) √ 

ε(2 ε+1) 
if 0 < ε < 

1 
2 

ε if 1 
2 ≤ ε < 1 

Consider next n = 2 . By (31) , π∗
0 | n =2 = 

1 
3 ε

2 + 

2 
3 ε. Finally consider the case n = 1 . By

(31) the innovator obtains 0 since we restrict k ≤ n − 1 . To provide a more reasonable
comparison we assume in this case that the innovator sells the license to the incumbent
firm by fixed fee. The innovator’s payoff is then π∗′ 

0 | n =1 = π1 (0 , 1) − π1 (1 , 0) = 

1 
4 ε

2 + 

1 
2 ε.

Fig. 7 provides the comparison of the innovator’s payoff when n 

∗ = 2 
√ 

2 + 

1 
ε − 1 , n = 2

and n = 1 . Clearly in G 0 the innovator obtains the highest payoff in an oligopoly market
with n 

∗ = 2 
√ 

2 + 

1 
ε − 1 firms. 

A.13. Semi-uniform auction 

Finally we introduce and analyze another auction mechanism, a semi-uniform auction 

(SUA), with a weaker asymmetry requirement than NUA. In this auction the innovator 
chooses ( k 1 , k 2 ), 1 ≤ k 1 ≤ n − 1 and k 2 ≥ 0. The k 1 highest incumbent bidders and the k 2 
highest entrant bidders win the auction and all of them pay the same license fee which
is the lowest winning bid. 18 Note that the willingness to pay of an incumbent firm is 0 if
k 1 = n . This is the reason we restrict our analysis to k 1 ≤ n − 1 . In SUA, like in NUA,
the innovator controls the number of incumbent and the number of entrant licensees, but
unlike NUA the innovator charges every licensee the fee. 
18 Note that in SUA the highest losing bid, if submitted by an entrant, may be higher than the willingness 
to pay of an incumbent winner. To avoid this problem we define the license fee as the lowest winning bid. 
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Fig. 7. The innovator’s payoff under different n . 
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Let G su be the game associated with SUA. In the subgame G su ( k 1 , k 2 ) of G su each
ncumbent is willing to pay 

w l ( k 1 , k 2 ) = π1 ( n − k 1 , k 1 + k 2 ) − π0 ( n − k 1 , k 1 + k 2 ) . 

ach entrant is willing to pay 

w e ( k 1 , k 2 ) = π1 ( n − k 1 , k 1 + k 2 ) . 

Clearly w l ( k 1 , k 2 ) ≤ w e ( k 1 , k 2 ) . In particular, for k 1 + k 2 < 

1 
ε , π0 ( n − k 1 , k 1 + k 2 ) > 0

nd w l ( k 1 , k 2 ) < w e ( k 1 , k 2 ) . It can be verified that the innovator’s equilibrium payoff in
 su ( k 1 , k 2 ) is uniquely determined and it is ( k 1 + k 2 ) w l ( k 1 , k 2 ) for k 1 > 0 and k 2 w e (0 , k 2 )

or k 1 = 0 . 

emark. Notice that some entrants may bid above the SUA license fee and still do not
btain a license. Yet in equilibrium the innovator has no incentive to increase k 2 since it
ill increase competition and lower his total revenue. 

Let π∗
su ( n, ε) be the innovator’s equilibrium payoff in G su . 

π∗
su ( n, ε) = max ( π0 

su ( n, ε) , ̂  πsu ( n, ε)) (32)

here 
π0 
su ( n, ε) = max 

k 2 ≥1 
k 2 w e (0 , k 2 ) 
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and 

ˆ πsu ( n, ε) = max 

1 ≤k 1 ≤n −1 
0 ≤k 2 

( k 1 + k 2 ) w l ( k 1 , k 2 ) . (33) 

When k 1 = 0 each entrant licensee pays her entire profit for a license. But when k 1 > 0
each entrant licensee pays less, only the willingness to pay of an incumbent licensee. 

Proposition 10. (i) π∗
su ( n, ε) ≤ π∗

u ( n, ε) and (ii) π∗
su ( n, ε) ≤ π∗

nu ( n, ε) . 

Proof. (i) In UA the highest equilibrium payoff of the innovator is 

π∗
u ( n, ε) = max ( π0 

u ( n, ε) , ̂  πu ( n, ε)) 

where π0 
u ( n, ε) = max k≥1 k w e (0 , k ) and ˆ πu ( n, ε) = max 1 ≤k 1 ≤n −1 

0 ≤k 2 

( k 1 + k 2 ) w h ( k 1 , k 2 ) . Part

(i) follows from w h ( k 1 , k 2 ) ≥ w l ( k 1 , k 2 ) for any ( k 1 , k 2 ). 
(ii) Follows from the fact that for any ( k 1 , k 2 ), NUA yields the innovator a higher

payoff than SUA. �

The innovator in UA can choose only k while in SUA he can choose in addition the
partition of k . In the first glance the innovator should always obtain a higher payoff in
SUA than in UA. But this is not necessarily the case. There are cases in which UA
yields the innovator a higher payoff than SUA since an incumbent licensee is willing to
pay more in UA for further entry prevention. As for the comparison between SUA and
NUA, note that in NUA, in addition to choosing the partition ( k 1 , k 2 ), the innovator can
discriminate in price entrants from incumbent licensees. Therefore for any ( k 1 , k 2 ) and
k 2 > 0, NUA yields the innovator a higher payoff than SUA. 

Next we characterize the market structure that provides the highest incentive to inno- 
vate in G su . Like in NUA, in SUA the innovator obtains the highest payoff in a monopoly
market. 

Proposition 11. A monopoly industry maximizes the revenue of the innovator if he sells
licenses by SUA. 

Pro of. The pro of is similar to that of Prop osition 4 , and hence omitted. �

We next analyze for any industry size n the optimal licensing strategy of the innovator
in SUA as a function of ε. Unlike NUA, the equilibrium licensing strategy is discontinuous
for one value of ε (the equilibrium revenue of the innovator is however continuous for any
ε). We will discuss this point after stating the next proposition. 

Proposition 12. Consider the equilibrium of G su . For n ≥ 3 there exists r ( n ), r ( n ) > 0, such
that (i) if r ( n ) < ε≤ 1 then the innovator sells positive number of licenses to entrants only
if he sells n − 1 licenses to all (but 1) incumbent firms. In this region the total number of
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icensees is larger, the less significant is the magnitude of innovation. (ii) At ε = r( n ) the
nnovator has two optimal licensing strategies: either selling n − 1 licenses to incumbent
rms and some licenses to entrants, or selling n + 1 licenses to only entrants. (iii) if
 < ε< r ( n ), the innovator sells n + 1 licenses to entrants only. 

The proof as well as the exact formula of the equilibrium strategy of the innovator in
UA appears in A.15 of the Appendix . 
The reason for selling licenses only to entrant in SUA for less significant innovations is

he ability of the innovator to extract the entire industry profit of every entrant licensee.
his is in contrast to the case where he sells some licenses also to incumbent firms. In

he latter case the license fee an entrant pays is equal to the willingness to pay of an
ncumbent licensee which decreases to zero as ε→ 0. To illustrate this point suppose
hat ε = 0 . 19 In this case if the innovator sells some licenses to incumbent firms, every
icensee in SUA will pay zero license fee to the innovator. If instead, the innovator sells
icenses only to entrants, he obtains the entire industry profit of all new entrant licensees
entrants wouldn’t be able to enter the market otherwise). If there are n incumbent firms
he linear demand assumption implies that the innovator maximizes his revenue if the
umber of entrant licensees is n + 1 . 

Let us compare the outcome of SUA with the outcome of NUA. First observe that
or ε> r ( n ) in both SUA and NUA the total number of licenses the innovator sells is
ecreasing in the magnitude of the innovation and the innovator may sell licenses to
ntrants, only if he also sells licenses to all (but 1) incumbent firms. The main difference
etween SUA and NUA is when ε< r ( n ). In this case, unlike NUA, the innovator in
UA sells licenses only to new entrants and not to incumbent firms. This shift in the
nnovator’s optimal strategy generates a discontinuity in the number of licenses at ε =
( n ) . In contrast, the innovator in NUA can discriminate the entrant licensees and can
xtract their entire industry profit whether or not he sells licenses to incumbent firms.
herefore in NUA the innovator sells licenses to both new entrants and incumbent firms,
ven for small ε. 

Let K 

∗
su and K 

∗
nu be the total number of licenses the innovator sells in SUA and NUA,

espectively. 

roposition 13. Suppose n ≥ 2 . There exists l ( n ), 0 < l ( n ) < 1, such that if 0 < ε≤ l ( n ),
 

∗
nu ( n, ε) > K 

∗
su ( n, ε) . 

roof. See A.18 of the Appendix . �

Proposition 13 shows that comparing with SUA, NUA results in higher diffusion of
echnology for less significant innovations. As shown in Proposition 12 for less significant
nnovations, the innovator in SUA does not sell licenses to incumbent firms while in
19 This is the case where the innovator provides no improvement in cost but his technology allows free 
ntry. 
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NUA he sells licenses to entrants in addition to all (but 1) incumbent firms. Therefore
the ability to price discriminate new entrant licensees has positive effect not only on the
innovator’s revenue but also on social welfare, as compare with SUA. 20 

A.14. The maximizer of π∗
su ( n, ε) 

Let ( k s ∗1 ( n, ε) , k s ∗2 ( n, ε)) be the maximizer of π∗
su ( n, ε) . 

For n ≥ 3 

k s ∗1 ( n, ε) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

0 if 0 < ε < r( n ) 
n − 1 if r( n ) ≤ ε ≤ 2 

3 n −5 
n +1 

4 + 

1 
2 ε if 2 

3 n −5 ≤ ε ≤ 2 
n +1 

1 
ε if 2 

n +1 ≤ ε < 1 

and 

k s ∗2 ( n, ε) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

n + 1 if 0 < ε < r( n ) 

2 
√ 

2 + 

1 
ε − ( n + 1) if r( n ) ≤ ε ≤ 4 

n 2 +2 n −7 

0 if 4 
n 2 +2 n −7 ≤ ε < 1 . 

For n = 2 

k s ∗1 (2 , ε) = 

{ 

0 if 0 < ε < r(2) 
1 if r(2) ≤ ε ≤ 1 

and 

k s ∗2 (2 , ε) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

3 if 0 < ε < r(2) 
2 
√ 

2 + 

1 
ε − 3 if r(2) ≤ ε ≤ 1 

2 
1 
ε − 1 if 1 

2 ≤ ε < 1 . 

For n = 1 , k s ∗1 (1 , ε) = 0 and k s ∗2 (1 , ε) = 2 . 21 

A.15. Proof of Proposition 12 

Let (0 , k 0 2 ) and ( ̂  k 1 , ̂  k 2 ) be maximizers of π0 
su ( n, ε) and ˆ πsu ( n, ε) , respectively. Clearly

either (0 , k 0 2 ) or ( ̂  k 1 , ̂  k 2 ) is a maximizer of π∗
su ( n, ε) . 

Lemma 6. 

k 0 2 ( n, ε) = 

{ 

n + 1 if 0 < ε < 

1 
n +1 

1 
ε if 1 

n +1 ≤ ε < 1 

Proof. Easy to verify. �
20 When ε≤ l ( n ) the market price in SUA is c + 

1 −( n +1) ε
2( n +1) (easy to verify) while the market price in NUA 

is c + 

1 −2 ε
2( n +1) ( Proposition A.8 ). 

21 In G su we restrict k 1 ≤ n − 1 therefore k s ∗1 (1 , ε) = 0 . If, instead, an auction with minimum reservation 
price is conducted to the monop oly incumb ent, there are parameters under which the innovator sells licenses 
to the incumbent firm in addition to entrants. 
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Next we focus on the analysis of ˆ πsu ( n, ε) . Note that n = 1 does not apply here since
 1 = 0 in this case. 

emma 7. (i) For n ≥ 3 

ˆ k 1 ( n, ε) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

n − 1 if 0 < ε ≤ 2 
3 n −5 

n +1 
4 + 

1 
2 ε if 2 

3 n −5 ≤ ε ≤ 2 
n +1 

1 
ε if 2 

n +1 ≤ ε < 1 

ˆ k 2 ( n, ε) = 

{ 

2 
√ 

2 + 

1 
ε − ( n + 1) if 0 < ε ≤ 4 

n 2 +2 n −7 

0 if 4 
n 2 +2 n −7 ≤ ε < 1 

(ii) For n = 2 
ˆ k 1 (2 , ε) = n − 1 

ˆ k 2 (2 , ε) = 

{ 

2 
√ 

2 + 

1 
ε − ( n + 1) if 0 < ε ≤ 1 

2 
1 
ε − ( n − 1) if 1 

2 ≤ ε < 1 

Note that 4 
n 2 +2 n −7 ≤

2 
3 n −5 for n ≥ 3. 

roof. See A.16 of the Appendix . �

To find the optimal licensing strategy of the innovator, we next compare π0 
su ( n, ε) and

ˆ su ( n, ε) . 

emma 8. For n ≥ 2, π0 
su ( n, ε) > ˆ πsu ( n, ε) iff ε< r ( n ) . 

The formula of r ( n ) is quite complicated and it appears in the Appendix A.1 . 

roof. See A.17 of the Appendix . �

We are now ready to characterize the optimal licensing strategy of the innovator. 

roposition 14. For n ≥ 2 

k ∗1 ( n, ε) = 

{ 

0 if 0 < ε < r( n ) 
ˆ k 1 ( n, ε) if r( n ) ≤ ε < 1 

nd 

k ∗2 ( n, ε) = 

{ 

n + 1 if 0 < ε < r( n ) 
ˆ k 2 ( n, ε) if r( n ) ≤ ε < 1 . 
roof. Follows immediately from Lemmas 6 –8 . �
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A.16. Proof of Lemma 7 

We first shows that the innovator in SUA sells licenses to entrants iff he sells licenses
to all (but one) incumbent firms. 

Lemma 9. For any n ≥ 2 and 0 < ε< 1, ˆ k 2 ( n, ε) > 0 iff ˆ k 1 ( n, ε) = n − 1 . 

Pro of. Denote k = k 1 + k 2 . Supp ose first k = 

1 
ε . In this case each licensee (entrant or

incumbent firm) pays the entire Cournot profit and by the assumption that incumbent 
firms have priority over entrants in case of a tie, the innovator sells licenses to incumbent
firms and only when he exhausts all (but 1) incumbents will he sell licenses to entrants.
Suppose next 1 ≤ k < 

1 
ε , 

∂w l ( k 1 , k − k 1 ) 
∂k 1 

= −2 ε ( kε− 1 ) 
( n − k1 + k + 1 ) 2 

> 0 . (34) 

For any k , 1 ≤ k < 

1 
ε , the license fee paid by each licensee is increasing in the number

of incumbent licensees in k . Therefore the innovator in this case also sells licenses to
incumbents first. Lemma 9 follows. �

By Lemma 9 , if k ≤ n − 1 , k 1 = k and k 2 = 0 . If, however, k > n − 1 , k 1 = n − 1 and
k 2 = k − ( n − 1) . Therefore 

ˆ πsu ( n, ε) = max 

(
max 

1 ≤k≤n −1 
k w l ( k , 0) , max 

k 2 
(( n − 1 + k 2 ) w l ( n − 1 , k 2 )) 

)
(35) 

Suppose first n ≥ 3. It can be verified that the maximizer of max 1 ≤k≤n −1 k w l ( k , 0) is

˜ k 1 ( n, ε) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

n − 1 if 0 < ε ≤ 2 
3 n −5 

n +1 
4 + 

1 
2 ε if 2 

3 n −5 ≤ ε ≤ 2 
n +1 

1 
ε if 2 

n +1 ≤ ε < 1 
(36) 

and the maximizer of ( n − 1 + k 2 ) w l ( n − 1 , k 2 ) is 

k̄ 2 ( n, ε) = 

{ 

2 
√ 

2 + 

1 
ε − ( n + 1) if 0 < ε ≤ 4 

n 2 +2 n −7 

0 if 4 
n 2 +2 n −7 ≤ ε < 1 

(37) 

(37) states that for 4 
n 2 +2 n −7 ≤ ε < 1 , the innovator is best off selling 0 licenses to en-

trants even if he sells n − 1 licenses to incumbent firms. By Lemma 9 ˆ k 1 ( n, ε) = 

˜ k 1 ( n, ε)
and 

ˆ k 2 ( n, ε) = 0 in this case. As for 0 < ε ≤ 4 
n 2 +2 n −7 , the innovator is best off selling

positive number of licenses to entrants if he sells n − 1 licenses to incumbent firms. Since
4 

n 2 +2 n −7 ≤
2 

3 n −5 by (36) the innovator in this case is best off selling n − 1 licenses to 
incumbent firms even if k 2 = 0 . Therefore ˆ k 1 ( n, ε) = n − 1 and 

ˆ k 1 ( n, ε) = 

ˆ k 2 ( n, ε) in this
case. Part (i) of Lemma 7 follows. 
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Suppose next n = 2 . By Lemma 9 , ˆ k 1 (2 , ε) = 1 . It can be easily verified that ˆ k 1 (2 , ε) =
in (2 

√ 

2 + 

1 
ε − 3 , 1 ε − 1) . 

.17. Proof of Lemma 8 

By Proposition 6 it is easy to verify that 

π0 
su ( n, ε) = 

{ 

( ε( n +1)+1 ) 2 
4( n +1) if 0 < ε < 

1 
n +1 

ε if 1 
n +1 ≤ ε < 1 

(38)

y Proposition 7 it is easy to verify that for n ≥ 3 

ˆ πsu ( n, ε) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 ε
(√ 

1 + 2 ε−√ 

ε
)2 if 0 < ε ≤ 4 

n 2 +2 n −7 
( n −1)( −( n −3) ε2 +2 ε) 

n +1 if 4 
n 2 +2 n −7 < ε ≤ 2 

3 n −5 
( nε+ ε+2) 2 

8( n +1) if 2 
3 n −5 ≤ ε ≤ 2 

n +1 

ε if 2 
n +1 ≤ ε < 1 

For n = 2 

ˆ πsu ( n, ε) = 

{ 

2 ε
(√ 

1 + 2 ε−√ 

ε
)2 if 0 < ε ≤ 1 

2 

ε if 1 
2 ≤ ε < 1 

Suppose ε ≥ 1 
n +1 , then π0 

su ( n, ε) = ε and ˆ πsu ( n, ε) ≥ ε. In this case ˆ πsu ( n, ε) ≥
0 
su ( n, ε) . We next focus on the case 0 < ε ≤ 1 

n +1 . 
Case 1: Consider first n ≥ 7. In this case 1 

n +1 ≥
2 

3 n −5 . 
Subcase 1.1: Suppose 2 

3 n −5 ≤ ε ≤ 1 
n +1 . 

ˆ πsu ( n, ε) − π0 
su ( n, ε) = − ( n + 1) 2 ε2 − 2 

8( n + 1) 

here ˆ πsu ( n, ε) ≥ π0 
su ( n, ε) iff −

√ 

2 
n +1 ≤ ε ≤

√ 

2 
n +1 . Therefore ˆ πsu ( n, ε) ≥ π0 

su ( n, ε) holds for
2 

3 n −5 ≤ ε ≤ 1 
n +1 . 

Subcase 1.2: Suppose 4 
n 2 +2 n −7 ≤ ε ≤ 2 

3 n −5 . 

π0 
su ( n, ε) − ˆ πsu ( n, ε) = 

(
5 n 

2 − 14 n + 13 
)
ε2 

4( n + 1) + 

( −6 n + 10 ) ε
4( n + 1) + ( 4 n + 4 ) −1 

ote that 5 n 2 −14 n +13 
4( n +1) > 0 for n ≥ 7. It can be easily verified that π0 

su ( n, ε) > ˆ πsu ( n, ε) iff
< 

3 n −5 −2 
√ 

n 2 −4 n +3 
5 n 2 −14 n +13 or ε > 

3 n −5+2 
√ 

n 2 −4 n +3 
5 n 2 −14 n +13 . 

Denote e 1 = 

3 n −5 −2 
√ 

n 2 −4 n +3 
5 n 2 −14 n +13 and e 2 = 

3 n −5+2 
√ 

n 2 −4 n +3 
5 n 2 −14 n +13 . Fig. 8 compares the value

f e 1 , e 2 , 4 
n 2 +2 n −7 and 

2 
3 n −5 numerically. Note that e 1 and 

4 
n 2 +2 n −7 intersects at

 = 16 . 19 . Thus if 4 
n 2 +2 n −7 ≤ ε ≤ 2 

3 n −5 , for 7 ≤n ≤ 16.19, ˆ πsu ( n, ε) > π0 
su ( n, ε) holds. For

 > 16.19, π0 
su ( n, ε) > ˆ πsu ( n, ε) iff 4 

n 2 +2 n −7 ≤ ε < e 1 . 
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Fig. 8. Comparison between e 1 , e 2 , 4 
n 2 +2 n −7 and 2 

3 n −5 . 

 

 

 

 

 

Subcase 1.3: Suppose 0 < ε ≤ 4 
n 2 +2 n −7 . 

π0 
su ( n, ε) − ˆ πsu ( n, ε) 

= 

n 

2 ε2 + 

(
16 

√ 

1 + 2 εε3 / 2 − 22 ε2 − 6 ε
)
n + 16 

√ 

1 + 2 εε3 / 2 − 23 ε2 − 6 ε + 1 
4 n + 4 

It can be easily verified that π0 
su ( n, ε) ≤ ˆ πsu ( n, ε) iff

−8 
√ 

1 + 2 εε3 / 2 − 11 ε2 + 2 
√ 

−48 
√ 

1 + 2 εε7 / 2 − 12 
√ 

1 + 2 εε5 / 2 + 68 ε4 + 34 ε3 + 2 ε2 − 3 ε
ε2 

≤ n ≤ −8 
√ 

1 + 2 εε3 / 2 + 11 ε2 + 2 
√ 

−48 
√ 

1 + 2 εε7 / 2 − 12 
√ 

1 + 2 εε5 / 2 + 68 ε4 + 34 ε3 + 2 ε2 + 3 ε
ε2 

Denote f 1 = − 8 
√ 

1+2 εε3 / 2 −11 ε2 +2 
√ 

−48 
√ 

1+2 εε7 / 2 −12 
√ 

1+2 εε5 / 2 +68 ε4 +34 ε3 +2 ε2 −3 ε
ε2 and f 2 = 

−8 
√ 

1+2 εε3 / 2 +11 ε2 +2 
√ 

−48 
√ 

1+2 εε7 / 2 −12 
√ 

1+2 εε5 / 2 +68 ε4 +34 ε3 +2 ε2 +3 ε
ε2 . 

Note that for n ≥ 7, 0 < ε ≤ 4 
n 2 +2 n −7 iff n ≤ 2 

√ 

2 + 

1 
ε − 1 . Fig. 9 shows that f 2 >

2 
√ 

2 + 

1 
ε − 1 always holds. Note that ε is constraint to 1 

14 since we are dealing in this
subcase ε ≤ 4 

n 2 +2 n −7 and n ≥ 7. 

Fig. 10 compares the value of f 1 and 2 
√ 

2 + 

1 
ε − 1 . Note that f 1 and 2 

√ 

2 + 

1 
ε − 1 inter-

sects at ε = 0 . 0139 and n = 16 . 19 . By Fig. 10 , π0 
su ( n, ε) > ˆ πsu ( n, ε) iff either ε< 0.0139 or

ε> 0.0139 and n < f 1 ( ε). Or equivalently, when 0 < ε ≤ 4 
n 2 +2 n −7 , π

0 
su ( n, ε) > ˆ πsu ( n, ε) iff

either n > 16.19 or n ≤ 16.19 and ε < f −1 
1 ( n ) (the existence of f −1 

1 ( n ) is shown in Fig. 1 ).
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Fig. 9. Comparison between f 2 and 2 
√ 

2 + 

1 
ε − 1 . 

Fig. 10. Comparison between f 1 and 2 
√ 

2 + 

1 
ε − 1 . 

 

7

Combining subcases 1.1–1.3, for n ≥ 17, π0 

su ( n, ε) > ˆ πsu ( n, ε) iff 0 < ε< e 1 . For
 ≤n ≤ 16, π0 

su ( n, ε) > ˆ πsu ( n, ε) iff 0 < ε < f −1 
1 ( n ) . 

Case 2: Consider next 1 + 2 
√ 

3 ≤ n < 7 . In this case 4 
n 2 +2 n −7 ≤

1 
n +1 < 

2 
3 n −5 . 
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Fig. 11. Comparison between e 1 , e 2 , 4 
n 2 +2 n −7 and 1 

n +1 . 

 

 

 

 

 

 

Subcase 2.1: Suppose 4 
n 2 +2 n −7 ≤ ε ≤ 1 

n +1 . 

π0 
su ( n, ε) − ˆ πsu ( n, ε) = 

(
5 n 

2 − 14 n + 13 
)
ε2 

4( n + 1) + 

( −6 n + 10 ) ε
4( n + 1) + ( 4 n + 4 ) −1 

where 5 n 

2 − 14 n + 13 > 0 for 1 + 2 
√ 

3 ≤ n < 7 . By the same argument as in Subcase 1.2,
π0 
su ( n, ε) ≤ ˆ πsu ( n, ε) iff e 1 ≤ ε≤ e 2 . Fig. 11 shows that π0 

su ( n, ε) ≤ ˆ πsu ( n, ε) for 4 
n 2 +2 n −7 ≤

ε ≤ 1 
n +1 . 

Subcase 2.2: Suppose 0 < ε ≤ 4 
n 2 +2 n −7 , or equivalently 1 + 2 

√ 

3 ≤ n ≤
min (7 , −ε+2 

√ 

2 ε2 + ε
ε ) . Clearly ε ≤ 1 

2(1+ 

√ 

3 ) . By the same argument as in Subcase 
1.3, π0 

su ( n, ε) ≤ ˆ πsu ( n, ε) iff f 1 ≤n ≤ f 2 . It can be easily verified that f 2 > 7 for
0 < ε ≤ 1 

2(1+ 

√ 

3 ) . Fig. 12 compares the value of f 1 and 

−ε+2 
√ 

2 ε2 + ε
ε . Therefore for

1 + 2 
√ 

3 ≤ n ≤ min (7 , −ε+2 
√ 

2 ε2 + ε
ε ) , π0 

su ( n, ε) > ˆ πsu ( n, ε) iff either 0 < ε < f −1 
1 (7) or

f −1 
1 (7) ≤ ε and n < f 1 . Or equivalently, π0 

su ( n, ε) > ˆ πsu ( n, ε) iff ε < f −1 
1 ( n ) . 

Combining subcases 2.1–2.2, for 1 + 2 
√ 

3 ≤ n < 7 , π0 
su ( n, ε) > ˆ πsu ( n, ε) iff ε < f −1 

1 ( n ) .
Case 3: Suppose 3 ≤ n ≤ 1 + 2 

√ 

3 . In this case 1 
n +1 ≤

4 
n 2 +2 n −7 . Consider 0 < ε ≤ 1 

n +1 
(or equivalently, 3 ≤ n ≤ min 

(
1 + 2 

√ 

3 , 1 ε − 1 
)
). Clearly ε ≤ 1 

4 . By the same argument 
as in Subcase 1.3, π0 

su ( n, ε) ≤ ˆ πsu ( n, ε) iff f 1 ≤n ≤ f 2 . Fig. 13 compares the value of f 1 , f 2 
and 

1 
ε − 1 . 

Fig. 13 shows that for 3 ≤ n ≤ 1 + 2 
√ 

3 , π0 
su ( n, ε) > ˆ πsu ( n, ε) iff ε < f −1 

1 ( n ) . 
Finally suppose n = 2 . Clearly for 1 

3 ≤ ε < 1 , π0 
su (2 , ε) ≤ ˆ πsu (2 , ε) since π0 

su (2 , ε) = ε

and ˆ πsu (2 , ε) ≥ ε. For 0 < ε ≤ 1 
3 , π

0 
su (2 , ε) > ˆ πsu (2 , ε) iff either f 1 ( ε) > 2 or f 2 ( ε) < 2. It
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Fig. 12. Comparison between f 1 , f 2 and −ε+2 
√ 

2 ε2 + ε

ε

Fig. 13. Comparison between f 1 , f 2 and 1 
ε − 1 . 

c
e

 

n

an be easily verified that f 2 ( ε) > 2 for any 0 < ε ≤ 1 
3 . Therefore π0 

su (2 , ε) > ˆ πsu (2 , ε) iff
ither f 1 ( ε) > 2. Or equivalently, π0 

su (2 , ε) > ˆ πsu (2 , ε) iff ε < f −1 
1 (2) . 

To summarize, for any n ≥ 2, π0 
su ( n, ε) ≤ ˆ πsu ( n, ε) iff 0 < ε< r ( n ) where r( n ) = e 1 for

 ≥ 16.19 and r( n ) = f −1 
1 ( n ) for 1 ≤n < 16.19. 
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A.18. Proof of Proposition 13 

For n ≥ 3, 

K 

∗
su ( n, ε) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

n + 1 if 0 < ε < r( n ) 

2 
√ 

1 + 

1 
ε − 2 if r( n ) ≤ ε ≤ 4 

n 2 +2 n −7 

n − 1 if 4 
n 2 +2 n −7 ≤ ε ≤ 2 

3 n −5 
n +1 

4 + 

1 
2 ε if 2 

3 n −5 ≤ ε ≤ 2 
n +1 

1 
ε if 2 

n +1 ≤ ε < 1 

K 

∗
nu ( n, ε) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

2( n +2 ε) 
2 nε+1 if 0 < ε ≤ 1 

2 n −4 

n − 1 if 1 
2 n −4 ≤ ε ≤ 2 

3 n −5 
n +1 

4 + 

1 
2 ε if 2 

3 n −5 ≤ ε ≤ 2 
n +1 

1 
ε if 2 

n +1 ≤ ε < 1 

Observe that K 

∗
nu ( n, ε) 

ε→ 0 −−−→ 2 n > n + 1 . Since K 

∗
nu ( n, ε) is continuous on ε and

K 

∗
su ( n, ε) = n + 1 for 0 < ε< r ( n ), Proposition 13 follows. The same argument can be

applied to case n = 2 . 
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