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Abstract

We consider a dynamic inspection problem between a principal and several agents.

The principal observes the full inspection history, whereas each agent only observes

inspections imposed on himself. When inspection resources are limited, the inspection

intensities for agents are negatively correlated, and hence each agent cares not only

about his own inspection history, but also about the inspection histories of the other

agents. In such cases, should the principal publicly reveal past inspection history,

or should she conceal this information? We show that the principal bene�ts from

concealing inspection history. Nevertheless, this bene�t becomes less signi�cant as the

number of agents increases, and disappears in the limit case with a continuum of agents.
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1 Introduction

A utility-maximizing agent (he) can often increase his utility by breaking some rules:

given the opportunity, �rms will violate regulations that increase their costs, workers will

shirk on their tasks, and taxpayers will under-report their income. To reduce the rate of

violations, it is customary for the principal (she) to use inspections as a means to discipline

agents. The principal's inspection scheme determines which agents are to be inspected in

each period, as well as the information on past inspections that will be revealed to the agents.
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There are two channels to a�ect agents' beliefs on past inspections. The �rst operates by

concealing an agent's inspection result from himself: that is, an agent who is inspected is not

informed of his own inspection outcome. This channel has been well studied in the literature,1

and Fuchs (2007) shows that the principal is best o� keeping the agent uninformed of the

intermediate outcome realizations until the last period, since this allows for the reusability

of punishments. Nevertheless, concealing an agent's own inspection result from himself is

possible only when the performance measure is subjective. Scenarios like environmental

inspection or tax auditing do not �t into this category. In this paper, we focus on contexts

where the performance evaluation is objective, and each agent knows his own inspection

history. In these cases, the principal has another channel to a�ect agents' beliefs on past

inspections, namely, by strategically revealing the inspection history of the other agents.

At a �rst glance, if each agent's payo� depends only on the actions he takes and the

inspection intensity he faces, the inspection outcomes for other agents are irrelevant to the

agent. This is not true when inspection resources are limited and full compliance is not

implementable. Indeed, in such cases, the inspection intensities for agents are negatively

correlated � from the perspective of agent i, a lower inspection intensity for other agents

implies that more inspection resources are left for agent i, and hence he is less willing to

violate. When the principal uses an inspection scheme that is history dependent, the strategic

revelation of past inspection histories constitutes an important policy instrument.

In reality, more often than not, no information about inspection outcomes is publicly

available. Yet the past few decades have witnessed a considerable increase in the amount

of public information provided by inspection authorities. Back in the 1980s, the US started

adopting the �public disclosure programs� that mandate public reporting of �rms' compliance

with environmental regulations. Since then, similar programs have been developed in many

countries.2

Despite the growing popularity of such public disclosure programs, their bene�ts are open

to debate, and no universal and �rm conclusions can be drawn from the empirical ground.

Some empirical works support the view that disclosure has a positive impact, but there are

also some doubts about this conclusion, due to lack of data prior to the introduction of the

disclosure program,3 the implementation of other programs concurrently with the disclosure

1Levin (2003) and MacLeod (2003) were the �rst to analyze this environment.
2For instance, Canada's National Pollutant Release Inventory (1992), Indonesia's PROPER program

(1995), Philippines' EcoWatch (1997), Australia's National Pollutant Inventory (2000), Europe's Pollutant
Emission Register (2000), and China's GreenWatch (2000).

3The US Environmental Protection Agency reported an overall 43% decrease of national release of toxics
under the US Toxics Release Inventory (TRI). However, since trend data prior to TRI's introduction are not
available, one cannot infer that TRI is responsible for the entire reduction in emissions.
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program,4 and the non-universality of the positive results5 (Folmer and Tietenberg, 2007).

From a theoretical perspective, there is a large literature devoted to the e�ect of pub-

licizing inspection results. Yet, most of these works have abstracted away from the direct

interaction between inspectors and agents. This literature shows that with public disclosure,

�rms face additional pressure for compliance from third parties, e.g., neighbouring commu-

nities, consumers, investors, or stockholders. This helps to discipline the behavior of �rms

and yields a positive result (see, e.g., Hamilton, 1995, Konar and Cohen, 1997, Lanoie, La-

plante, and Roy, 1997, Tietenberg and Wheeler, 2001, Foulon, Lanoie, and Laplante, 2002,

Blackman, Afsah, and Ratunanda, 2004, Stephan, 2002).

We contribute to this literature by focusing on the interaction between inspectors and

agents, and showing that contrary to previous positive results, when the number of agents

is small, public disclosure of inspection histories may hurt the principal. This being said,

the advantage of concealing inspection histories becomes less signi�cant as the number of

agents increases. In the limiting game with a continuum of agents, the advantage of con-

cealing information disappears. We mainly deal with the model where the principal has a

commitment power. The no-commitment case is discussed in Section 3.2.

Formally, we compare two realistic monitoring structures: public monitoring and private

monitoring.6 Under public monitoring, the principal announces her observations after each

period (that is, the identity of the inspected agents and their actions). Under private mon-

itoring, the principal conceals her observations (that is, each agent only observes his own

inspection history).

To illustrate the superiority of private monitoring, we start with an important feature

of the optimal inspection scheme under public monitoring. Under public monitoring, it is

optimal for the principal to adopt an inspection scheme that favors agents who successfully

passed inspections (i.e., were found adhering) in early periods. Indeed, to improve upon the

static scenario, a successfully passed inspection has to be accompanied by a future bonus to

the agent: that is, the promise of the principal turning a blind eye with positive probability in

the future, so that the agent can violate without penalty. The feature that greater compliance

typically leads to less enforcement is well recognized in both theory and practice.7 When

4In China, together with the introduction of the GreenWatch, conventional regulations were more strongly
established, and other programs for emission reduction were implemented concurrently.

5Canada's National Pollutant Release Inventory (NPRI) was established in 1992. In an analysis of trends
since 1997, the 2000 NPRI found that the total releases of 17 toxic substances were up slightly (4.5%).

6The problem of optimal information revelation is discussed in Section 4.3.
7Gray and Deily (1996) analyze the air pollution data in the US steel industry and �nd that less regulatory

attention is imposed on the steel plants with greater compliance. Dubin and Wilde (1988) study the IRS
data set and observe a similar pattern: a higher compliance level induces lower audit rates.
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the principal plans her activities according to a pre-allocated budget, less enforcement on

certain agents implies greater enforcement on other agents. This implies that agents who are

inspected less often in early periods are subject to greater enforcement later on, and they

violate less in the long run.

Under private monitoring, using a similar inspection scheme, but adding a small prob-

ability to no inspection in early periods, the principal manipulates agents' beliefs to her

advantage: this way, with a positive probability each agent assigns a high probability to the

event that the other agents were inspected in early periods and hence he himself will face

high inspection intensities in the future. Since all agents follow the same reasoning, in such

eventuality all agents violate less in the long run.

From a technical perspective, the advantage of private monitoring over public monitoring

is that it allows the principal to transfer inspection resources across histories, and attain a

more e�cient use of it. We illustrate this important point by an example. Suppose that

agent i adheres if and only if the probability he is inspected is at least 3
4
, and suppose that

there are two histories h and h′, which di�er only in the actions of some other agent j.

Suppose further that at h (resp., h′) agent i is inspected with probability 1 (resp., 0). Under

public monitoring, agent i adheres at h and violates at h′. Under private monitoring, agent

i cannot distinguish between h and h′. If these two histories constitute an information set

for agent i, and if, given that the information set is reached, agent i assigns probability at

least 3
4
to h, then at this information set agent i adheres. In particular, he adheres at h′.

Thus, the potential superiority of hiding information (private monitoring) stems from

pooling some histories together, so that an agent's incentive constraint has to be satis�ed

only in expectation rather than state by state. This pooling is advantageous only if at some

histories the inspection resource is inevitably super�uous (hence agents' incentive constrains

are slack), and the pooling allows a more e�cient use of this redundant resource as it can

average out some other histories where the inspection resource is scarce.

The above e�ect is more signi�cant when the number of agents is small. As the number

of agents increases, under public monitoring, the ability to �nely divide agents into groups

(with agents in the same group being treated similarly) allows the principal to attain a

more e�cient use of the inspection resource at any given history, and the gain from pooling

histories decreases. In the limit case with a continuum of agents, the perfect divisibility of

agents allows public monitoring to attain the most e�cient use of the inspection resource,

so that agents' incentive constraints are binding at any history, and there is no gain from

pooling histories.

The key point of our paper is that sometimes the principal wants to pool information to
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keep agents in the dark, so as to attain a better use of her resources.8 This manipulation

works under various conditions, which include, among others, a negative correlation between

the resources available for inspecting each agent,9 a commitment power of the principal,10

and the inability of agents to communicate and �gure out the past actions of the princi-

pal.11 This result has important policy implications. As mentioned before, a large literature

argues that public monitoring has an important advantage over private monitoring, as it

makes �rms face additional pressure for compliance from third parties. We show that the

call for publicly disclosing more information may miss out some of the tradeo�s that arise

under limited inspection resource. Especially when having a few agents, the �exibility in

manipulating agents' beliefs o�ered by private monitoring may outweigh the said advantage

of public monitoring. Yet as the number of agents increases, the advantage of private moni-

toring disappears, and public monitoring becomes unequivocally preferable.

Related literature.

Our paper is related to information design problems where the designer can send private

signals to agents. In static settings, Bergemann and Morris (2016) and Taneva (2019) relate

the optimal information disclosure to the best Bayes correlated equilibrium from the sender's

perspective, and propose mechanisms to compute the optimal utility of the sender. In

particular, Bergemann and Morris (2016) show that more information reduces the set of

outcomes by imposing more incentive constraints. Arieli and Babichenko (2019) study the

private information disclosure in a speci�c Bayesian persuasion model of product adoption,

and analyze how information should be revealed optimally by the �rm in order to maximize

its revenue as a function of its utility and the utilities of the consumer.

Even though in the static model there is a clear pattern that more information reduces

the set of outcomes and hence hurts the designer, this is not necessarily the case in repeated

games. In dynamic settings, Matsushima (1991) and Bhaskar and Van Damme (2002) pro-

vide examples of repeated games where public monitoring is superior to private monitoring.

In these examples, public disclosure is bene�cial because it implies a larger set of strategies

for the players, since they can condition their future actions on more information.

In contrast, Phelan and Skrzypacz (2012) provide dynamic examples in which less in-

formation bene�ts incentives. In these examples, players do not observe each other's action

8A similar idea also appears in Crawford (2003), where sophisticated players can mimic the action of
mortal players (who always play a certain �xed action) so as to confuse the opponent.

9This condition is satis�ed if the inspection resource is limited, or if the marginal inspection cost is
increasing (see Section 3.3).

10In Section 3.2 we discuss the no-commitment case.
11In Remark 1 we discuss agents' (in)ability to communicate.
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directly. Instead, they observe a noisy signal of it. In such cases, a less accurate signal

serves to make the threat of punishment credible: if a player knows too well the action of the

opponent, then even if he observes unexpected signals, the incentive to punish the opponent

can be insu�cient. More noise on the signal helps in generating more uncertainty on the

opponent's past actions, which makes it easier to satisfy incentive constraints.

In our model, each agent interacts mainly with the principal, and his incentive to punish

a deviation of another agent is less relevant. The change on the monitoring structure thus

a�ects agents' behavior in a way di�erent from Phelan and Skrzypacz (2012): in the two-

period game, under private monitoring, the equilibrium play in the second period can be a

correlated equilibrium of the stage game (with private histories as the correlation device),

while under public monitoring, the equilibrium play in the second period is necessarily a

Nash equilibrium of the stage game.

The fact that private histories can constitute an appropriate correlation device for the

second-period play to support the e�cient correlated equilibrium has long been observed in

the private strategy literature (see, e.g., Lehrer, 1991, and Mailath, Matthews, and Sekiguchi,

2002). Lehrer (1991) studies two-player in�nite undiscounted repeated game with a speci�c

public monitoring structure; Mailath, Matthews, and Sekiguchi (2002) provide an example

with two agents and two periods. We study �nitely-repeated inspection problems that involve

multiple agents. In addition to the above driving force, there exist others that favor public

monitoring (see Remark 2 and Theorem 5). We identify conditions under which private (or

public) monitoring dominates.

Andrews and Barron (2016) study a dynamic relational contract problem between a

principal and several agents, and show that concealing information may be bene�cial to

the principal. In their paper, monetary transfers between the principal and each agent

are allowed. If the principal can commit to a strategy, then the �rst-best outcome can

be implemented with a simple stationary contract. Andrews and Barron (2016) therefore

focus on no-commitment cases (the outputs produced by agents are non-contractable) and

construct a dynamic allocation rule � the Favored Supplier Allocation � that attains the

�rst-best outcome whenever any allocation rule does. In such cases, information does not

play a crucial role, and the principal does not bene�t from disclosing/concealing information

on past play. They show that in the two-agent case, when the �rst-best outcome cannot be

attained, full disclosure may not be optimal and concealing some information may yield a

superior outcome to the principal.

Similarly to ours, this last result is related to the literature on correlated equilibrium:

The private histories can constitute an appropriate correlation device for future play. A

key di�erence between our paper and Andrews and Barron (2016) is that we do not allow
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monetary transfers between players. Therefore, even in the commitment case, concealing

information can be superior. Also, we study cases that involve more than two agents. In

particular, in the no-commitment case, we show that when the number of agents is large,

in sharp contrast to the two-agent problem, public monitoring can be strictly superior to

private monitoring.

Kandori and Obara (2006) study the di�erence between public and private strategies, and

show that the latter may be superior. They consider a repeated prisoner's dilemma game

with public signals on the stage outcomes. In their model, the signal is rather insensitive

to a deviation at the cooperative point, but it is quite sensitive to one's deviation when

the opponent is playing D. In such cases, private strategies (which depend not only on

public signals, but also on players' own actions in the past) can achieve a more e�cient

outcome than public strategies (which depend solely on the history of publicly observable

signals). This is because private strategies allow players to use additional information (i.e.,

their own past actions) to improve the e�ciency of punishments. In contrast, in our model

private monitoring implies that an agent has less information than in the model with public

monitoring, since he can observe the actions of others only in the latter case.

Our paper is also related to repeated moral hazard problems that involve private evalu-

ation. In those problems, there is an agent who takes an action, which generates a (noisy)

signal to the principal. The principal does not observe the action of the agent, and the agent

does not observe the signal to the principal. Levin (2003) and MacLeod (2003) were the �rst

to analyze this environment, yet their analysis is essentially static. Fuchs (2007) extends the

analysis to a dynamic environment, and analyzes the optimal timing to reveal the principal's

private signal. A single-agent problem is studied and it is shown that the principal is best o�

keeping the agent uninformed of the intermediate outcome realizations until the last period.

In our paper, similarly to Fuchs (2007), concealing inspection histories makes the use

of the reward more e�cient. Nevertheless, there is a substantial di�erence: Unlike Fuchs

(2007), we study multiple-agent problems, and the uncertainty no longer stems from the

agent's own inspection history, but rather from other agents' inspection histories. Moreover,

unlike Fuchs (2007), where monetary transfer is allowed, in our paper the reward can only

take the form of violations and is bounded by 1 in each period. These two di�erences in the

setup imply the following di�erences in the equilibrium analysis. First, in our model with

multiple agents and no monetary transfer, it is no longer clear that concealing information

is always better (we elaborate on this point in Remark 2 and Theorem 5). Second, for con-

cealing information to be bene�cial, a negative correlation between agents is required, and

hence the inspection cost has to be convex in the number of inspections. Third, the e�ect

of information now depends crucially on the number of agents.
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The paper is organized as follows. Section 2 studies the benchmark model with one

inspector and two agents, and Section 3 generalizes the benchmark result. Discussion appears

in Section 4. Proofs are relegated to the Appendix.

2 Benchmark model

We start with a two-period game between a principal and two agents.12 In every period

each agent decides whether to Adhere or to Violate. The principal has limited inspection

resources and she can costlessly inspect at most one agent in each period (i.e., the principal

has one inspector at her disposal). The action of the inspected agent is perfectly observed

by the principal.

The action set of agent i, i = 1, 2, is Ai := {A, V }, where A stands for adhering and

V for violating. The action set of the principal is A0 := {I1, I2, ∅}, where ∅ stands for no
inspection, and I1 (resp., I2) stands for inspecting Agent 1 (resp., Agent 2). Throughout the

paper, whenever a variable refers to the principal we add the subscript 0, and whenever it

refers to Agent 1 or 2 we add the subscript 1 or 2, respectively.

2.1 The stage payo�

The gain of each agent from adhering is normalized to 0, and his gain from an undetected

violation is normalized to 1. The agent's loss from a detected violation is denoted by c. The

value of c is exogenously given, say, by legal constraints. Consequently, the stage payo�

function of agent i, denoted ui, is given by

ui(a) =


0, if ai = A,

−c, if ai = V and a0 = Ii,

1, if ai = V and a0 6= Ii,

(1)

where a = (a0, a1, a2) is the vector of actions played at the current stage. The principal loses

1 for each violation, detected or undetected. Therefore, the principal's loss function, denoted

`0, is given by

`0(a) =


2, if a1 = a2 = V ,

1, if ai = A and aj = V for i 6= j,

0, if a1 = a2 = A.

(2)

12In Section 3.1 we extend our results to games that involve more agents. In Section 3.4 we discuss games
with a larger number of periods.
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We assume that the principal does not observe undetected violations, hence she does not

observe her realized payo�. The form of the principal's loss function implies that we focus on

the principal's incentive to deter violations, rather than on her incentive to collect penalties.

Indeed, in many cases, it is di�cult, if not impossible, to compare the damage caused by

the violation behavior with the monetary penalties, as they are in di�erent dimensions.13 In

Section 4.1 we discuss scenarios where the principal bene�ts from collecting penalties.

In the one-shot game, an agent adheres (resp., violates) as long as the probability he

is inspected is larger (resp., smaller) than 1
1+c

. Therefore, when the �ne for violation is

su�ciently large, speci�cally, if c ≥ 1, the principal can deter both agents from violating by

inspecting each agent with probability 1
2
. Similarly, in the repeated game, when c ≥ 1, the

stationary strategy that inspects each agent with probability 1
2
at every period guarantees

that rational agents will always adhere. In the sequel we will focus on the nontrivial case

c < 1.

Assumption 1. 0 < c < 1.

When c is less than 1, in the one-shot game an agent adheres whenever the inspection

probability is larger than 1
1+c

> 1
2
. The best the principal can do is to deter one agent from

violating and allow the other agent to violate.

2.2 Monitoring structure and histories

We now turn to the two-period game. If the principal inspects an agent, the action of

that agent is perfectly observed by the principal. Thus, the principal observes at the end of

each period a private signal y0, drawn from a signal space Y0 = {V1, A1, V2, A2, ∅}, with the

interpretation that the signal ∅ means no agent was inspected, and the signal Ai (resp., Vi)

means that agent i was inspected and found adhering (resp., violating). As for the agents'

observations, we consider two monitoring structures.

In one structure, the monitoring is public: The identity of the inspected agent (if any)

as well as the outcome of the inspection are announced to all players. In other words, the

signal received by the principal is publicly observed by the agents, and it constitutes the

public history. The public monitoring game is denoted by Gpub.

In the other structure, the monitoring is private: Any uninspected agent does not know

whether the principal inspected the other agent and, if the other agent was inspected, what

was the outcome of the inspection. Thus, an agent only observes whether he himself is

inspected or not. Formally, if agent i is inspected, he receives the same signal as the principal

13For instance, in the environmental control problems, the damage caused by a marine oil spill cannot be
compared with a monetary �ne.
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(that is, either Ai or Vi). Otherwise, agent i receives the signal Ni, meaning that he was not

inspected. The private monitoring game is denoted by Gpri. Figure 1 provides an illustration

for the di�erence in signals (marked in red) under the two monitoring structures.

Figure 1: Examples for signals under di�erent monitoring structures.

We further assume that the players have at their disposal a public correlation device,

which outputs at the beginning of every period t a random signal ζt that is uniformly

distributed on the interval [0, 1] and independent of past play and past random signal. The

public correlation device is crucial in some parts of the proofs. On the equilibrium path,

however, the use of the correlation device is minimal.14

For player i, the information available in period t, denoted hti, is the (t − 1)-period

history of the outcome of the correlation device, his private signals and past actions. The

set of �nite-length private histories is denoted by Hi.

2.3 Strategies and payo�s

A (behavior) strategy of the principal is a function from the set H0 of her private histories

to the set ∆A0 of her mixed actions,

σ0 : H0 → ∆A0.

Denote by B0 the set of strategies of the principal in the repeated game.

It is assumed that the principal publicly announces her entire inspection strategy at the

beginning of the game and she is able to commit to it (we discuss the no-commitment case

in Section 3.2). Since the principal's entire strategy is known to the agents from the outset

14In the main model where the principal has a commitment power, the correlation device is not used in
the two-period game, and it is used in at most one period in T -period games with T ≥ 3.
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of the game, a strategy for an agent assigns a mixed action to every strategy of the principal

and every private history of the agent. Formally, for i = 1, 2, a strategy of agent i is a

function

σi : B0 ×Hi → ∆Ai,

where ∆Ai is the set of mixed actions of agent i. Note that under public monitoring, it is

without loss of generality to assume that agents use only public histories and ignore their

private information (that is, their uninspected past actions).15

Each player's payo� is the discounted sum of his stage payo�s, where δ is the common

discount factor. Formally, in period t, the action pro�le at yields the payo� ui(a
t) to agent

i, and the loss `0(a
t) to the principal. A play a = (a1, a2) thus determines two stage

payo�s/losses to each player. Denote agent i's discounted payo� under strategy pro�le σ by

vi(σ) := Eσ

[
2∑
t=1

δt−1ui(a
t)

]
, (3)

and the principal's discounted loss under the strategy pro�le σ by

L0(σ) := Eσ

[
2∑
t=1

δt−1`0(a
t)

]
. (4)

Recall that agents observe their realized stage-game payo�, while the principal does not.

This is because the principal knows only the action of the inspected agent, so she is unaware

of the damage in�icted on her by the uninspected agent.

2.4 Equilibrium concept

Denote the two-period game following the announcement of an inspection strategy σ0 by

Γpub(σ0) in the public monitoring game and by Γpri(σ0) in the private monitoring game.

Under public monitoring, all participants observe the same public signal, and we study

perfect public equilibria (PPEs) of the game Γpub(σ0). That is, deviations of the two agents

are non-pro�table after every public history. Formally, given a player i, for each history

ht and each strategy σi, player i's continuation strategy given history ht, denoted σi|ht , is
de�ned by σi|ht(hτ ) := σi(h

thτ ), for every hτ ∈H . The pair of strategies (σ1, σ2) is a PPE

of the subgame Γ(σ0) if for every public history ht ∈ H , the pair of strategies (σ1|ht , σ2|ht)
is a Nash equilibrium of Γ(σ0|ht).

15Conditional on the public history, each agent's private information is independent of the private in-
formation of the other agent. Therefore, for any equilibrium strategy in which agents use their private
information, we can �nd a public-strategy equilibrium which yields the same outcome.
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Under private monitoring, each participant observes his or her own private signal, and

we study sequential equilibria (SEs) of the game Γpri(σ0). That is, deviations of the agents

are non-pro�table after every private history. Formally, a system of beliefs is a function µ

that assigns to each information set w of the game tree a probability distribution on the set

of histories that lead to w. Given a strategy pro�le σ, a system of beliefs µ is consistent if

there is a sequence of completely mixed strategy pro�les (σk)k∈N, converging pointwise to

σ, such that the associated conditional beliefs (µk)k∈N converge pointwise to the system of

beliefs µ. A strategy pro�le and a system of beliefs form a sequential equilibrium (SE) if

each player, after every private history of his, plays a best response given beliefs that are

consistent with his private history.

By Assumption 1, 0 < c < 1, and under both public and private monitoring, no inspection

mechanism can ensure a violation-free behavior of the agents. Indeed, an agent who is

inspected with probability less than 1
1+c

in the �rst period can always obtain a positive

payo� by violating in the �rst period and adhering in all subsequent periods. In fact, if

both agents react myopically in the �rst period and adhere in all subsequent periods, they

guarantee themselves16 a total payo� of 1− c. Since the principal's loss is equal to or larger

than the agents' gain,17 a loss of 1− c for the principal is inevitable.

Fact 1. When there are two agents and one inspector, the equilibrium loss of the principal

is at least 1− c, regardless of the monitoring structure and the length of the game.

2.5 Equilibrium analysis

Denote by Lpub the lowest loss of the principal among all PPEs under public monitoring,

and by Lpri the lowest loss of the principal among all SEs under private monitoring. If Lpri <

Lpub (resp., Lpri > Lpub), the principal's loss under private monitoring is lower (resp., higher)

than her loss under public monitoring. We write Private � Public (resp., Private ≺ Public)

for this case, and say that private monitoring is superior (resp., inferior) to public monitoring

for the principal. The notation Private ≈ Public corresponds to the case Lpri = Lpub. The

next theorem provides conditions under which Private � Public.

Theorem 1. Suppose there are two agents and one inspector. If δ > 1− c, then Private �
Public in the two-period game.

16By this strategy agent i guarantees himself a payo� max{0, 1 − (1 + c)pi}, where pi is the inspection
probability for agent i. Since p1 + p2 ≤ 1, regardless of the choice of p1 and p2, the two agents guarantee
themselves a total payo� of 1− c.

17The principal's loss exceeds agent's gain if and only if the agent is inspected while he violates; in such
cases the inspection hurts the agent without bene�ting the principal.
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Proof. See Appendix A.1.

The condition δ > 1− c is a simplifying assumption, which guarantees that the principal

can induce both agents to adhere in the �rst period (under both monitoring structures).18

The rest of this section is devoted to providing an intuitive explanation to Theorem 1. We

�rst discuss the structure of the optimal PPE under public monitoring. We then explicitly

solve an example and show that there exists an SE that is superior to the optimal PPE.

Preliminary: Properties of the optimal PPE. First, to identify the optimal PPE,

without loss of generality we can restrict attention to equilibria that satisfy the following

conditions:19

(i) Whenever an agent is indi�erent between adhering and violating, he adheres.

(ii) On the equilibrium path, whenever an agent violates, he is inspected with probability 0.

(iii) An agent who is inspected and found violating in the �rst period is punished in the most

severe way: he is inspected with probability 1 in the second period.

Intuitively, Part (i) holds because the correlation device can be used to mimic lotteries

performed by the agents. To illustrate part (ii), recall that the principal cannot completely

deter violations. When an agent is supposed to violate in equilibrium, a positive probability

of inspection hurts the agent without bene�ting the principal. If this happens in the second

period, it weakens the agent's incentive to adhere in the �rst period and hurts the princi-

pal. Consequently, in equilibrium the principal never detects violations, and any detected

violation implies that the inspected agent deviated. This further implies that, without loss

of generality one can assume that an agent who is inspected and found violating is punished

in the most severe way, which is the content of Part (iii). In the rest of this paper we focus

on PPEs that satisfy these conditions.

In period 2, an agent adheres if and only if the probability of inspection is at least 1
1+c

.

In period 1, however, agent i may adhere when the inspection probability pi is lower than
1

1+c
, provided that he is compensated in the second period (by being allowed to violate) if

he passes the inspection in period 1. The lower pi, the higher the reward required in period

2.

18If δ < 1− c, then using the second-period violation as a reward, the principal cannot deter both agents
from violating in the �rst period. This is true under both monitoring structures. Even in this case, it is still
possible that Private � Public, since private monitoring may lead to higher compliance level in the second
period.

19Results in this subsection are reminiscent of results in Solan and Zhao (2021), and their proofs are
omitted (Solan and Zhao, 2021, study games with in�nitely many periods, but their proofs can be modi�ed
to �t games with T periods for any �nite T ≥ 2).
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Formally, suppose agent i is inspected in period 1 with probability pi. If agent i violates,

he obtains

vi(V ) =
(
(1− pi)− c · pi

)
+ δ ·

(
pi · vVi + (1− pi)vNIi

)
, (5)

where vVi = 0 (resp., vNIi ) is agent i's continuation payo� if he is inspected and found

violating (resp., if he is not inspected). The �rst term on the right-hand side of Eq. (5)

represents agent i's current-period gain from violation, and the second term represents his

future payo�, depending on whether he is inspected in the current period. If agent i adheres,

he obtains

vi(A) = 0 + δ ·
(
pi · vAi + (1− pi)vNIi

)
,

where vAi is his continuation payo� if he is inspected and found adhering.

By adhering rather than violating, agent i loses in the �rst period, but gains in the second

period if his adhering behavior is observed by the principal. If the latter e�ect is su�ciently

strong, that is, the agent's continuation payo� upon being found adhering is su�ciently

higher than his continuation payo� upon being found violating (which is zero for PPEs that

satisfy condition (iii)), then the agent is better o� adhering. As the next proposition shows,

the following function f : (0, 1]→ R+ measures this di�erence (see Figure 2):

f(p) :=

{
1−p−cp
pδ

, if 0 < p < 1
1+c

,

0, if 1
1+c
≤ p ≤ 1.

(6)

Figure 2: The function f(p).

Proposition 1. Suppose that σ is a PPE under public monitoring. Then agent i adheres in

the �rst period if and only if vAi ≥ f(pi).

Proposition 1 asserts that agent i who is inspected in the �rst period with probability

pi adheres in that period if and only if his continuation payo� upon being inspected and
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found adhering is at least f(pi). Thus, f(pi) is the minimal reward to an agent who is

inspected with probability pi that ensures he adheres in the current period. The fact that

f is non-increasing re�ects the property that in a given period, inspection probabilities and

future rewards are substitute in deterring an agent from violating. Indeed, the higher the

probability of inspection, the less attractive it is to violate, hence a lower compensation is

needed to ensure that the agent adheres.

Another property of the optimal PPE is that the optimal response of an agent in a given

period depends only on his continuation payo� if he is inspected in that period. In contrast,

the agent's continuation payo� if he is not inspected, which is the same regardless of his

current-period action, does not a�ect the agent's incentive compatibility constraint.

This result has an important implication. To improve upon the static game and have

both agents adhere in the �rst period, the agent who is inspected is subject to a certain

reward in the future. Whereas for the uninspected agent, his continuation payo� can be set

as low as possible (subject to the constraint on the inspection resource), without a�ecting

the �rst-period incentives. Therefore, the agent who is not inspected in early periods will

be treated less favorably � he will face higher inspection probability and violate less in the

second period.

Optimal PPE in an example with public monitoring. To illustrate the optimal

PPE, let us study a special case where c = 0.85 and δ = 0.9. In the one-shot game, an agent

adheres whenever the inspection probability he faces is higher than 1
1+c

= 0.54, and hence it

is impossible for the principal to deter both agents from violating.

Under public monitoring, the optimal inspection scheme, denoted σ∗, adopts the following

structure (see Figure 3). Under σ∗, no agent violates in period 1 and only one agent violates

in period 2 � the principal's loss is δ.

Figure 3: Optimal equilibrium under public monitoring.

• Strategy of the principal:
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� In the �rst period, inspect each agent with probability 0.5.

� If the inspected agent is found adhering in the �rst period, then in the second

period he is inspected with probability 0, and the other agent is inspected with

probability 1.

� Punishment: if the inspected agent is found violating in the �rst period, he is

inspected with probability 1 in the second period.

• Strategy of agent i, i = 1, 2:

� Agent i adheres in the �rst period.

� If agent i is inspected in the �rst period and found adhering, he violates in the

second period.

� In all other scenarios agent i adheres in the second period.

That is, in the �rst period the principal randomly chooses one agent to inspect; if this

agent played A in the �rst period, then inspect the other agent in the second period; if this

agent played V in the �rst period, then keep inspecting the same agent in the second period.

This way, both agents play A in the �rst period,20 and the agent being inspected �rst, who

is found to play the principal's preferred action, is not inspected in the second period (so

that he can play V as a reward). In equilibrium, being inspected is good news for an agent

and not being inspected is bad news. Since the principal announces her observations after

the �rst period, one violation in the second period is unavoidable (we will show that this is

not the case under private monitoring).

An SE with private monitoring that yields a superior outcome. Now we turn to

private monitoring, and show that the principal can attain a superior outcome. In particular,

while making both agents adhere in the �rst period, with a positive probability both agents

adhere also in the second period. This can be done, for instance, by the following inspection

strategy, which is similar to the previous strategy, except that it assigns a positive probability

to no inspection in the �rst period (see Figure 4).21 Let ε be a su�ciently small positive

number.

• Strategy of the principal:

20Since a successfully passed inspection in the �rst period leads to a reward of 1 in the second period,
and since 1 > f(0.5), both agents are better o� adhering in the �rst period (see Proposition 1).

21We omit the speci�cation of the belief system in an SE when agents' beliefs over the private histories
of the other players can be computed by Bayes' rule.
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Figure 4: An inspection strategy under private monitoring.

� In the �rst period, the principal inspects each agent with probability 1
2
− ε. With

probability 2ε no agent is inspected.

� If no agent is inspected in the �rst period, then in the second period both agents

are inspected with probability 1
2
.

� Otherwise, follow the same instructions as in σ∗.

• The strategies of the agents are similar to σ∗: on the equilibrium path both agents

adhere in the �rst period, and the agent who is inspected in the �rst period violates in

the second period.

Under private monitoring, the principal bene�ts from assigning a positive probability

(2ε) to no inspection in the �rst period. The di�erence between this equilibrium and σ∗ (the

optimal PPE under public monitoring) lies on the eventuality that no agent is inspected in

the �rst period. If this happens, each agent is inspected with probability 1
2
in the second

period, and, in fact, each agent is better o� violating. But since an agent under private

monitoring cannot distinguish between the event �no one is inspected in the �rst period�

(which leads to an inspection probability of 1
2
) and the event �the other agent is inspected

in the �rst period� (which leads to an inspection probability of 1), he considers the average

situation, and is better o� adhering if ε is not too large.22

From a technical perspective, the superiority of private monitoring stems from pooling

some histories together, so that an agent's incentive compatibility constraints have to be

satis�ed only in expectation rather than state by state. This reduces the number of incentive

constraints, which bene�ts the principal.

22First, ε has to be small (in our example, ε ≤ 0.13) so that agents are still better o� adhering in the
�rst period (that is, 1 ≥ f( 12 − ε)). Second, ε has to be small so that if an agent is not inspected in the �rst
period, the expected inspection probability he faces in the second period is at least 1

1+c .
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In the inspection context, the above logic can be made more concrete. As argued before,

under the optimal PPE, having the opponent being inspected is bad news for an agent�

this agent will face higher inspection intensity and violate less in the future. Under private

monitoring, by assigning a positive probability to no inspection in the �rst period, the

principal induces both agents to believe with su�ciently high probability that the opponent

was inspected, and as a result both agents violate less in the future.

Remark 1. For the principal to manipulate agents' beliefs as described above, it is required

that agents cannot communicate and �gure out the past actions of the principal. Therefore,

our results better �t scenarios under which agents cannot communicate, e.g., for legal reasons.

If agents can communicate, they can possibly improve their payo�s by truthfully reporting

their past histories. Indeed, cheap-talk may help the agents because coordination is desirable

in the second period (see, e.g., Farrell and Gibbons, 1989). The proper analysis of the cheap-

talk problem (and its variant where agents have lexicographic preferences, i.e., given an agent

obtains the same payo�, he prefers the outcome where the other agent obtains a lower payo�)

is an interesting and challenging subject, which we leave for future studies.

Remark 2. Is private monitoring always weakly superior to public monitoring? The answer

is positive in all cases that we study in this paper, as long as the principal has a commitment

power.23 Yet, this result is not straightforward. Indeed, public histories are �ner than private

histories (see Figure 1), and hence an agent's set of public strategies is larger than his set of

private strategies.24 As a result, under public monitoring the principal has more �exibility

in adjusting agents' behavior according to the true history, and this �exibility may allow

a more e�cient use of the inspection resource. Suppose, for instance, that under private

monitoring Agent 1 faces a low inspection probability at history h1 = N1 (Agent 1 is not

inspected), and hence he violates at both histories ∅ (no agent is inspected) and I2 (Agent 2
is inspected). Under public monitoring, facing the same expected inspection probability, it

is possible that Agent 1 adheres at ∅ and violates only at I2. See Appendix A.2 for a detailed

discussion.

Section 3 generalizes Theorem 1 in several aspects. Section 3.1 deals with games that

involve more agents and inspectors. Section 3.2 studies the no-commitment case. Section 3.3

replaces the resource constraint by a �xed cost for each inspection in each period. Section

3.4 discusses games with a larger number of periods.

23When the principal lacks the ability to commit, private monitoring can be strictly inferior to public
monitoring, see Section 3.2.

24In Appendix A.2 we provide an example where a strategy pro�le under public monitoring cannot be
replicated by any strategy pro�le under private monitoring.
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3 Generalizations of the benchmark model

3.1 More agents and inspectors

In the previous section, we assumed that there are two agents and one inspector. In this

section, we consider the model with more inspectors and agents. We will show that when

the number of agents is large relative to the number of inspectors, the logic of Theorem 1

carries over, and private monitoring can be strictly better than public monitoring. Neverthe-

less, as the number of agents and inspectors increases, the superiority of private monitoring

over public monitoring becomes less signi�cant. In the limit case with an in�nite number of

agents, the two monitoring structures yield the same optimal outcome.

Suppose there are n ≥ 3 agents and m ≥ 1 inspectors: m is an integer that indicates the

maximum number of agents that can be inspected in each period. For every real number x

denote by bxc the largest integer smaller than or equal to x. As before, Lpub (resp., Lpri)

is the minimum equilibrium loss for the principal under public monitoring (resp., private

monitoring).

Theorem 2. Consider the two-period game with n agents and m inspectors. Suppose n ≥
b(2 + c)mc. (i) For almost all (c, δ), Private � Public. (ii) Lpub − Lpri ≤ δ, and the ratio

between Lpub − Lpri and the equilibrium loss goes to zero as n→∞.

Proof. See Appendix A.3.

Part (i) of Theorem 2 asserts that when the number of agents is large relative to the

number of inspectors, private monitoring is strictly better than public monitoring for almost

all (c, δ) (i.e., except a parameter set with Lebesgue measure zero). The condition n ≥
b(2 + c)mc is not necessary for the superiority of private monitoring, but it signi�cantly

simpli�es the analysis.25

Part (ii) of Theorem 2 asserts that even though private monitoring is superior to public

monitoring, the magnitude of its net bene�t is bounded above by δ. We show that the

equilibrium loss in this case is at least n − b(1 + c + δ)mc + δn − δb(1 + c)mc, which is

increasing in n. Therefore, when the number of agents is small, the advantage of private

monitoring over public monitoring can be signi�cant relative to the equilibrium loss. Yet,

when the number of agents is large, the upper-bound δ is small compared with the equilibrium

25In fact, we can construct examples where n < b(2 + c)mc and private monitoring is strictly superior
to public monitoring. Nevertheless, for n and m that violate the conditions of Theorem 2, it is generally
di�cult to identify the optimal equilibrium under public monitoring, and we are unable to provide a complete
comparison between the two monitoring schemes in such cases.
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loss, and the di�erence between the two monitoring structures is negligible. The intuition

for this result will be more transparent after we present the next theorem on the non-atomic

model, so we postpone its discussion.

Note that Lpub and Lpri capture the total loss of the principal from n agents' violations.

By Theorem 2, the di�erence between the average loss of the principal per agent in the two

monitoring structures, 1
n
(Lpri−Lpub), is bounded by δ

n
, which goes to zero as n increases. As

we will see in the next theorem, in the limit case with a continuum of agents (the non-atomic

model), the two monitoring structures yield the same optimal outcome � the average loss

of the principal is the same in both monitoring structures. Thus, the di�erence between

private and public monitoring in the non-atomic game is the limit of the di�erences in �nite

games, and the rate of convergence is O( 1
n
).

We next discuss the non-atomic case. Suppose the set of agents is [0, 1] and the principal

can inspect at most a �xed fraction of the agents, which we denote by α ∈ (0, 1). The

fraction α corresponds to m
n
in the �nite model. The formal de�nition of the non-atomic

game is presented in Appendix A.4.

Theorem 3. In the non-atomic model, Private ≈ Public for every 0 < α < 1.

Proof. See Appendix A.5.

To prove Theorem 3, we �rst show that regardless of the monitoring structure, the number

of violations is bounded below by some lower bound L.26 We then construct an equilibrium

under public monitoring, where the principal attains this lower-bound loss. In this equilib-

rium, the inspection intensity for an agent depends only on his own inspection result, and

hence it can be mimicked under private monitoring.

We next provide the intuition why the bene�t from manipulating information disappears

in the non-atomic case. The equilibrium that attains the lower-bound violations is described

at the end of this section.

Recall that the potential superiority of hiding information (private monitoring) stems

from pooling some histories together, so that an agent's incentive constraint has to be satis�ed

only in expectation rather than state by state. This pooling is advantageous only if at some

histories the inspection resource is inevitably super�uous (hence agents' incentive constraints

are slack), and the pooling allows a more e�cient use of this redundant resource as it can

average out some other histories where the inspection resource is scarce.

26The value of L varies with α. When α is large, L = 0; when α is moderately small, L = 1 − (1 + c)α;
and when α is very small, L = [1− (1 + c+ δ)α] + [δ − δ(1 + c)α].
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When there is a �nite number of agents, under public monitoring, inspection resources are

necessarily wasted at certain histories. This may happen because after inducing some agents

to adhere, the residual inspection resource is not enough to deter another violation, and

hence is left unused; or because some agents are allowed a free violation (as they successfully

passed inspections in the past), and hence the principal stays idle deliberately. Private

monitoring allows a transfer of the inspection resource across histories, and attains a more

e�cient use of it.

In the non-atomic game, the inspection resource is e�ciently used already under public

monitoring: �rst, since agents are perfectly divisible, the principal can put every bit of the

inspection resource to use, so there is no undesired ine�ciency. Second, the principal can

�nely divide agents into di�erent groups, so that the size of the set of agents who are allowed

a free violation in the future can perfectly match the available inspection resource, and hence

there is no deliberate ine�ciency. As a result, public monitoring attains the most e�cient

equilibrium outcome, and there is no gain from changing the monitoring structure.

The above logic applies also to the case where there is a �nite but large number of agents:

in such a case, the ability of the principal to �nely divide agents into groups enables a more

e�cient use of the inspection resource under public monitoring, and as a result the advantage

of private monitoring shrinks.

We turn to describe the equilibrium that attains the lower-bound violations under public

monitoring (see Figure 5): the population is divided into three groups. Agents in Group 1

are inspected in the �rst period with probability p∗ = f−1(1) and they are treated dynami-

cally � a successfully passed inspection in the �rst period is rewarded with a free violation

in the second period. Agents in Groups 2 and 3 are inspected with probability 1
1+c

and 0,

respectively, and they are treated myopically � the second-period inspection intensities they

face are independent of the �rst-period history. In the second period, except those agents

in Group 1 who are allowed a free violation, the principal inspects as many other agents as

possible with probability 1
1+c

. As a best response, in the �rst period agents in Groups 1 and

2 adhere, and agents in Group 3 violate. In the second period, agents who are inspected with

probability 1
1+c

adhere, and all other agents violate. It turns out that this simple structure

can yield the lower-bound violations L, so long as we choose the size of the groups carefully

(as a function of α).

Remark 3. In Theorem 2(ii) and Theorem 3, in line with other sections, we focus on the

comparison between public and private monitoring. In fact, stronger versions of these results

hold. In Theorem 2(ii), let Lopt be the minimum equilibrium violations across all monitoring
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Figure 5: The equilibrium that attains the lower-bound loss.

structures.27 If n ≥ b(2+ c)mc, then Lpub−Lopt ≤ δ. This implies that when there is a large

number of agents, public monitoring is nearly optimal, and the bene�t from manipulating

information is negligible. In the limit non-atomic game, public monitoring is optimal and

there is no gain from changing the monitoring structure.

3.2 No commitment

In line with previous studies on inspection problems, our paper focuses on games where

the principal has a commitment power.28 The analysis of the no-commitment case is another

interesting and challenging subject.29 In this section, we show that private monitoring still

has its advantage in the no-commitment case. Nevertheless, an opposite driving force that

favors public monitoring emerges: public monitoring enables agents to better monitor the

principal's actions and prevents the principal from deviating. We show that the advantage

of private monitoring dominates when the number of agents is small, whereas the advantage

of public monitoring dominates when the number of agents is large.

27We always assume that the inspection results are objective, so that each agent knows his own inspection
history. The monitoring structure only changes an agent's knowledge about other agents' inspection histories.

28In reality, it is not so infrequent that the inspection agency is able to announce and commit to a certain
inspection scheme in advance. Examples include speed deterrence programs that announce and implement
greater policy presence on certain highways (Eeckhout, Persico, and Todd, 2010), and safety inspections
managed by the Federal Aviation Administration that conduct periodic aircraft inspections on civil aviation
(FAR 91.409b).

29Applications that �t better the no-commitment scenario include inspections on workplace safety such
as the Mine Safety and Health Administration, restaurant hygiene inspections, and �rms' health and safety
inspections (see Jin and Leslie, 2009, Levine, To�el, and Johnson, 2012, Dechenaux and Samuel, 2014). Such
inspections are typically conduced �on-surprise� and without the principal announcing and committing to a
certain inspection plan in advance.
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The no-commitment model. In the no-commitment case, we assume that a strategy

of a player is a function from the set of his or her information sets to the set of his or her

mixed actions. In particular, we assume that the principal does not announce her inspection

strategy in advance, even though in equilibrium agents correctly anticipate the principal's

strategy.

Under public monitoring, we study PPE, which requires that deviations of the principal

and the agents are non-pro�table after every public history. Under private monitoring, we

study SE, which requires that deviations of the principal and the agents are non-pro�table

after every private history given their beliefs. The formal de�nitions of PPE and SE in this

game are standard, see, e.g., Mailath and Samuelson (2006) and Maschler, Solan, and Zamir

(2020).

The key di�erence between the above de�nition of equilibrium and that in the commit-

ment case (see Section 2.4) is the principal's incentive constraint: in the no-commitment

case, deviations of the principal present a new condition that should be taken into account.

Since the principal's payo� depends only on agents' actions (in particular, inspections are

costless up to capacity), the principal is indi�erent about whom to inspect in the second

period. As a result, the principal's incentive to deviate is relevant only in the �rst period,

where her action a�ects agents' second-period behavior.

The next result extends Theorem 1 to the no-commitment case.

Theorem 4. Suppose there are two agents and one inspector, and the principal has no

commitment power. Then in the two-period game, Private � Public if δ > (1− c) · 3(1+c)
c

.

Proof. See Appendix A.6.

Theorem 4 asserts that when there are two agents and one inspector, private monitoring

can still be superior to public monitoring, even though under a smaller set of parameters

compared with the commitment case.

We �rst argue that in the no-commitment case there is a new driving force that favors

public monitoring, and hence Private � Public is more di�cult to hold. Indeed, the principal

with no-commitment is relatively well disciplined (in the sense that her deviations can be

more easily detected) under public monitoring than under private monitoring. For instance,

the strategy pro�le depicted in Figure 3 can still be supported as a PPE: agents will punish

the principal by violating in the second period if they observe that the principal deviates to

�no inspection� in the �rst period.

In contrast, under private monitoring, since agents' observations are more restricted,
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most deviations of the principal go unnoticed.30 For instance, the strategy pro�le depicted

in Figure 3 cannot be supported as an SE, because the principal is better o� deviating from

the prescribed strategy and inspecting no agent in the �rst period. Such a deviation is

pro�table, as it induces both agents to adhere in the second period. Moreover, it cannot be

detected since an uninspected agent cannot rule out the possibility that the other agent was

inspected in the �rst period.

We next argue that the driving force that favors private monitoring still exists in the

no-commitment case, and as a result private monitoring can still be superior under some

parameters. Recall that in the commitment case, private monitoring is advantageous because

it enables the principal to manipulate agents' beliefs to her advantage: an agent's future

payo� is higher if he passed an inspection, and lower if the other agent passed an inspection.

By assigning a positive probability to no-inspection in the �rst period, the principal makes

both agents believe that (with a high probability) the other agent was inspected in the �rst

period, and consequently both agents violate less in the second period.

In the no-commitment case, we can show that to prevent the principal from deviating,

any equilibrium under private monitoring requires that each agent's continuation payo�

does not depend on whether this agent is inspected in that period. This restriction seems

to undermine the bene�t of private monitoring altogether, since now there is no longer any

payo� boost from a passed inspection. Nevertheless, with the help of the public correlation

device, we are able to restore the desired incentive.

In our construction, with the use of the correlation device, if an agent, say Agent 1, is

inspected in period 1 and passes the inspection, then he gets a free pass in the second period

when the realization of the correlation device is in [0, 1
3
]. If Agent 1 is not inspected in period

1, he gets a free pass in the second period when the realization of the correlation device is

in [1
3
, 2
3
]. This way, on the one hand, if the realization of the correlation device is in [0, 1

3
],

the agent enjoys a payo� boost from a passed inspection. This feature makes private moni-

toring attractive: no inspection triggers second-period adherence from both agents in some

contingencies, a feature that is absent in even the best public monitoring PPE. On the other

hand, this agent's expected continuation payo� remains the same regardless of whether he

is inspected or not in the �rst period. This ensures that the principal is indi�erent between

inspecting the agent or not. See Figure 11 in Appendix A.6 for the detailed construction.

The next theorem deals with the non-atomic game. Recall that in each period the

30The only exceptions are histories under which the principal is supposed to (not) inspect an agent with
certainty.

24



maximal fraction of agents the principal can inspect is α.

Theorem 5. Suppose the principal has no commitment power. In the non-atomic problem

with two periods, if 1
2+2c+δ

< α < 1
1+c

, then Private ≺ Public. Otherwise, Public ≈ Private.

Proof. See Appendix A.7.

To prove the optimality of public monitoring in Theorem 5, we show that the lower

bound L identi�ed in the commitment case can be attained as a PPE outcome in the no-

commitment case,31 and therefore no other monitoring structure (even with the use of the

correlation device) can improve on public monitoring.

The intuition is similar to that of Theorem 3. For private monitoring to be superior to

public monitoring, it must be the case that pooling some histories together is advantageous

for the principal. This happens only if at some histories the agents' incentive constraints

are slack (so that some inspection resources are wasted). This holds true for the two-agent

problem in Theorem 4. When the set of agents is [0, 1], the ability to perfectly divide agents

into groups enables the most e�cient use of the inspection resource under public monitoring,

and agents' incentive constraints are binding at any history. As a result, there is no longer

any gain from pooling histories together.

We now explain why public monitoring is sometimes strictly superior to private mon-

itoring. Recall that under public monitoring, by observing the proportion of agents that

are inspected, a deviation of the principal can be easily detected and punished. However,

under private monitoring, since agents do not observe the proportion of inspected agents,

they cannot detect deviations of the principal. To deter the principal from not inspecting an

agent i who is supposed to be inspected, agent i's second-period payo� at history Ni (where

he is not inspected in the �rst period) has to be no less than his second-period payo� at

history Ii (where he is inspected in the �rst period). This happens in particular when agent

i's second-period payo� is independent of his inspection history.

When α is large (α ≥ 1
1+c

) or small (α ≤ 1
2+2c+δ

), we can show that the PPE that

attains the lower bound L has the feature that each agent's action in the second period is

independent of his inspection history. The same strategy pro�le forms an equilibrium also

under private monitoring, as the principal has no incentive to deviate.

Indeed, when α is large, the inspection resource is super�uous, and under the optimal

equilibrium both agents adhere in both periods, regardless of the history. When α is small,

the inspection resource is scarce, and under the optimal equilibrium each agent who is

supposed to adhere in the �rst period gets a free pass in the second period, regardless of

31Since every equilibrium under no-commitment forms an equilibrium under commitment, the value L
also constitutes a lower bound on the number of violations in the no-commitment case.

25



whether he is inspected in the �rst period (as long as he is not found violating). Such an

inspection scheme seems ine�cient at �rst glance, as it gives an agent a reward (that is, a

free violation in the second period) even if this agent is not inspected. Nevertheless, since

the inspection resource is scarce and a large number of violations in the second period is

unavoidable, such �generous� inspection strategy is optimal.

When α is in the intermediate range ( 1
2+2c+δ

< α < 1
1+c

), the PPE that attains the

lower bound L requires agents' continuation payo�s to be history dependent: an agent's

continuation payo� following no inspection has to be lower than his continuation payo�

following a successfully passed inspection. In particular, a �generous� inspection strategy

that gives all agents who are supposed to adhere a free pass (even if they are not inspected in

the �rst period) is no longer optimal, since some inspection resources are wasted in the second

period. The optimal PPE in this case fails to be an equilibrium under private monitoring,

as the principal bene�ts from deviating to �no inspecting� in the �rst period. As a result,

public monitoring is strictly superior to private monitoring.

Remark 4. We assume that the principal is subject to a resource constraint, and the in-

spection within the constraint costs zero. Suppose, instead, that inspection is costly. Then

the principal who lacks the ability to commit has an incentive to shirk (that is, to deviate

to no inspection). It turns out that in such cases, violations by both agents in both periods

constitute the unique equilibrium regardless of the monitoring structure.32 The argument

relies heavily on the assumption that the goal of the principal is to deter violations, rather

than to collect penalties (in Section 4.1 we discuss cases where the principal bene�ts from

catching violations). The full defection outcome here is in sharp contrast to the case where

the principal has a commitment power, which is studied in the next section.

3.3 Costly inspection

In the benchmark model, it is assumed that the principal is subject to a resource con-

straint: she can inspect at most one out of the two agents in each period. Suppose now

that the principal no longer has a resource constraint, but rather that there is a �xed cost

for each inspection in each period. Formally, suppose that in each period, the cost for the

�rst inspection is r1 and that for the second inspection is r2, where r1 ≤ r2. The benchmark

model corresponds to the special case r1 = 0 and r2 =∞.

32The principal is always better o� deviating to no inspection in the second period. Therefore, regardless
of the history, both agents violate in period 2. Since the agents' �rst-period actions do not a�ect their
second-period payo�, they play a Nash equilibrium of the one-shot game in period 1 � again, violation by
both agents.
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Suppose r1 = r2. Then regardless of the monitoring structure, it is optimal for the

principal to treat the agents independently, and hence changing the monitoring structure in

this case does not bene�t the principal (see Appendix A.8). This implies that the positive

e�ect of private monitoring in Theorem 1 stems from the tension between agents that results

from the non-linearity of the inspection cost.

An interesting question is, therefore, when r1 < r2 yet the di�erence is relatively small,

whether private monitoring is superior to public monitoring. The next result shows that

the logic of the superiority of private monitoring applies also to this case. For this result,

we focus on values r1 and r2 that satisfy a divergence condition, which states that in the

one-shot game, the principal is best o� deterring only one agent from violating. In fact,

the divergence condition not only rules out the use of the second inspection in the one-shot

game, it also rules out the second inspection in the optimal PPE under the two-period game

(see Appendix A.9). The case where the divergence condition is violated is discussed in

Appendix A.10.

De�nition 1. The inspection costs (r1, r2) satisfy the divergence condition if r1 < 1 + c and

r2 > 1 + c+ c(1+c−r1)
1−c .

Note that for pairs (r1, r2) that satisfy the divergence condition, as r1 increases to 1 + c,

the lower bound on r2 decreases to 1 + c. That is, r1 and r2 can be arbitrarily close yet

satisfy the divergence condition. The next result extends Theorem 1, and follows the same

line of logic.

Theorem 6. Suppose there are two agents and (r1, r2) satisfy the divergence condition. If

δ > 1− c, then Private � Public in the two-period game.

Proof. See Appendix A.9.

Theorem 6 implies that the key driving force of the superiority of private monitoring is the

increasing marginal cost of inspection: since the �rst inspection is cheaper than the second

one, if an agent is inspected with a lower intensity, then there are more �cheap� inspection

resources left for the other agent, and hence the other agent is more likely to face a higher

level of scrutiny. A pooling of the inspection resource across histories is advantages only when

such tension between agents exists. Theorem 1 studies the extreme case (r1 = 0, r2 = ∞),

and Theorem 6 generalizes this result to all parameters that satisfy the divergence condition.

3.4 T -period games with T > 2

In this section we generalize the two-period benchmark model to games that involve

T > 2 periods. We show that when players are relatively patient, private monitoring is
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superior to public monitoring as long as public monitoring is not the optimal information

revelation scheme for the principal. It is well known that the analysis of dynamic games

with private monitoring is challenging (see, e.g., Kandori, 2002). This is because players do

not necessarily know each other's continuation strategies, as they have di�erent information.

Hence they have to compute the beliefs about what the opponents are going to do, and

these beliefs become fairly complex over time. In this section we propose a novel approach

to tackle this problem.33

The next theorem provides conditions under which Private � Public in the T -period

game. For any T ≥ 2, let Lpub
T and Lpri

T be the principal's minimum equilibrium loss under

public and private monitoring, respectively, in the T -period game. By Fact 1, both Lpub
T and

Lpri
T are bounded below by LL := 1− c.

Theorem 7. Suppose there are two agents and one inspector, and δ > 1−c2
c
. In the T -period

game, if Lpub
T = LL, then Private ≈ Public. If Lpub

T > LL, then Private � Public.

Proof. See Appendix B.1.

The condition δ > 1−c2
c

guarantees that Private � Public for T = 2, and it serves to

simplify the analysis.

In the T -period game, if public monitoring attains the lower-bound loss LL, then clearly

private monitoring cannot improve on this outcome. We show that the optimal PPE can

be mimicked by an SE with the same path, and hence Private ≈ Public in this case. If,

however, the optimal PPE under public monitoring does not attain LL, then by Theorem 7,

there are equilibria under private monitoring that yield the principal a loss lower than Lpub
T .

The intuition of the superiority of private monitoring in the T -period game is similar to

that in the two-period game: private monitoring allows a transfer of the inspection resource

across histories, and attains a more e�cient use of it.

To construct an SE under private monitoring that is superior to the best PPE outcome,

we propose a novel approach that resembles backward induction. We �rst construct the

optimal PPE under public monitoring, and show that this equilibrium has an SE under

private monitoring with the same path. We then modify the last two periods of this SE: in

the new SE, the agents' beliefs on past plays are identical to their beliefs under the original

33In the literature on private monitoring, block strategies are sometimes used in the construction of
SE to avoid the di�cult task of keeping track of agents' beliefs in long horizons (e.g., Fuchs, 2007, and
Sugaya, 2012). Even though this approach is helpful in establishing the Folk Theorem in games with private
monitoring, it does not help with our problem: to compare private and public monitoring, it is not su�cient
to show that private monitoring can attain the best feasible payo� when δ → 1. Instead, we need to show
that for any �xed δ, private monitoring yields an outcome superior to the best equilibrium under public
monitoring. Since the optimal equilibrium under public monitoring is not a block construction, restricting
attention to block constructions cannot help us �nding a superior equilibrium in private monitoring.
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SE in all T − 1 periods, and di�er only in the last period. This approach signi�cantly

simpli�es the analysis of agents' incentives and makes the proof tractable.

In Appendix A.11 we provide conditions under which Lpub
T = LL, and discuss the e�ect

of T and δ on Lpub
T .

4 Discussion

4.1 The principal's additional gain from catching violations

In this paper we focus only on the principal's incentive to deter violations, and leave aside

her potential gain from catching violations. We now consider the case where the principal

bene�ts from catching violations, e.g., for the concern of public opinion or collecting �nes. In

the commitment case, as long as the gain from catching a violation is small compared with

the damage caused by the violation, the principal's incentive remains essentially the same

and the logic of Theorem 1 applies. This is because inspecting an agent who violates has a

positive direct e�ect on the principal's payo�, yet it reduces the agent's gain from violation;

this in turn a�ects negatively the agent's incentive in earlier periods, thereby in�icting a

negative indirect e�ect on the principal's payo�.

In the no-commitment case, however, assuming that the principal bene�ts from catching

violations has a drastic impact on the equilibrium outcome. The principal now has another

deviation, which is to catch those she is supposed to give a free pass. It turns out that

such incentive prevents the principal from disciplining agents: in all equilibria of the game

with two agents and one inspector, under both public and private monitoring, both agents

violate in both periods (see Appendix A.12). The intuition is that if in equilibrium one

agent adheres and another one violates, then the principal is better o� deviating from the

prescribed strategy, and shifting all inspection resources from the adhering agent to the

violating agent (in an attempt to catch violations), which upsets the equilibrium. It follows

that rewarding an agent who successfully passes an inspection is di�cult,34 and this restricts

the principal's ability to use future inspection intensities to discipline agents.

4.2 Optimal inspection scheme under private monitoring

In Section 1, to show that private monitoring is superior to public monitoring in the

benchmark model, we constructed one SE under private monitoring that is superior to the

optimal PPE under public monitoring. A question arises regarding the structure of the opti-

34This is possible only if both agents violate in the rewarding stage.
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mal SE under private monitoring. This is the content of the current section. For simplicity,

in this section we exclude the use of the public correlation device.

To identify the optimal SE, we need to use the �rst-period inspections optimally so as to

generate e�cient private signals to deter most violations in the second period. A di�culty

is that the �rst-period inspections cannot be arbitrary, since they have to take into account

the agents' �rst-period incentives.

Recall that to induce an agent to adhere in the �rst period, there are two options. The

�rst is to inspect the agent with su�ciently high probability (at least 1
1+c

), so that adhering

becomes a myopic best response. The second is to inspect the agent with a lower probability

and use future violations as a reward for a successfully passed inspection. In the two-period

game, the maximum reward is one free violation in the second period. This imposes a lower

bound p∗ = f−1(1) = 1
1+c+δ

on the �rst-period inspection that satis�es incentive constraints.

We will show that under private monitoring, when c is small, the principal's minimum

loss is 2δp∗: each agent is inspected with probability p∗ in the �rst period, and the one who

is inspected in the �rst period violates in the second period. When c is large, the principal's

equilibrium loss drops to δp∗: one agent is always inspected with probability 1
1+c

and he

always adheres; whereas the other agent is inspected with probability p∗ in the �rst period,

and he violates in the second period if he is inspected in the �rst period. Thus, an increase

on the punishment level c allows the principal to better discipline agents.

In line with Theorem 1, we focus on the case where δ > 1−c. This simplifying assumption

guarantees that the principal can induce both agents to adhere in the �rst period. Divide the

parameter space into three regions, as shown in Figure 6. The next proposition characterizes

the optimal inspection scheme under private monitoring.

Figure 6: The parameter space.
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Proposition 2. (i) For (c, δ) in regions A and B, the optimal inspection scheme under

private monitoring (as long as no violation is detected) follows Figure 7. (ii) For (c, δ) in

region C, the optimal inspection scheme under private monitoring (as long as no violation

is detected) follows Figure 8. (iii) Punishment: If an agent is found violating in period 1, he

is inspected with probability 1 in period 2.

Proof. See Appendix A.13.

Figure 7: Optimal SE for parameters in regions A and B.

For parameters in regions A and B, under the inspection scheme depicted in Figure 7,

both agents are inspected with probability p∗ in the �rst period and they adhere. In the

second period, the agent who is inspected in the �rst period faces inspection intensity zero

and he violates. The agent who is not inspected in the �rst period considers the average

situation and is better o� adhering. The loss of the principal in this equilibrium is 2δp∗:

each of the agents violates in the second period with probability p∗.

Figure 8: Optimal SE for parameters in region C.

For parameters in region C, under the inspection scheme depicted in Figure 8, Agent 2 is

treated myopically and he always adheres (that is, the expected inspection intensity he faces
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is at least 1
1+c

regardless of his private history). As for Agent 1, he adheres in the �rst period

in exchange for the chance of a free violation in the second period. In the second period,

Agent 1 violates if and only if he was inspected in the �rst period. The loss of the principal

in this equilibrium is δp∗: Agent 2 always adheres and Agent 1 violates in the second period

with probability p∗.

The key di�erence between the strategy pro�les described in Figures 7 and 8 is that in

the latter, Agent 2 adheres in the second period even if he is inspected and found adhering

in the �rst period. This implies that a successfully passed inspection for Agent 2 in the

�rst period is not rewarded, and hence to deter him from violating in the �rst period, an

inspection probability of 1
1+c

is needed. In fact, in the latter construction, Agent 2 is inspected

with probability at least 1
1+c

regardless of his private history. If c is small (parameters in

regions A and B), 1
1+c

is large, which implies that the inspection of Agent 2 takes too many

inspection resources, and the latter construction cannot be supported as an equilibrium: for

parameters in Region A, 1− 1
1+c

< p∗ and Agent 1 is better o� violating in the �rst period.

For parameters in Region B, Agent 1 adheres in the �rst period, but if he is not inspected

in the �rst period, the expected inspection intensity he faces is

1 ·
1− p∗ − 1

1+c

1− p∗
+

c

1 + c
·

1
1+c

1− p∗
,

which is lower than 1
1+c

, and he is better o� violating in the second period.

4.3 Optimal information revelation

In this paper we focus on two commonly observed monitoring schemes: private monitor-

ing and public monitoring. Another interesting question concerns the identi�cation of the

optimal way for the principal to reveal information. In the non-atomic problem, we've stated

in Remark 3 that public monitoring is optimal, and no other information-revelation scheme

can improve on its outcome. This section is devoted to problems with �nitely many agents,

in particular, with one inspector and two agents, and we show that the optimal revelation

scheme can outperform both public and private monitoring.

We �rst show that even though the lower-bound violations 1− c (see Fact 1) cannot be
attained under public and private monitoring, it can be supported by a more complicated

mechanism of information revelation. We then discuss the practical issues that may prevent

the implementation of the optimal information revelation scheme.

By a version of the revelation principle (see Forges, 1986), without loss of generality one

can assume that in each period the principal privately sends to each agent a recommended

32



action, and each agent follows the recommendation he gets.

One-shot game. In the one-shot game, when private signals are available, the principal

can use the following method to reduce her loss to 1 − c. To this end, the principal sends

recommendations as detailed in Table 1. For instance, with probability 1 − c the principal
inspects Agent 2, Agent 1 is told to violate, and Agent 2 is told to adhere. Note that Agent

2 is told to adhere in all three rows of the table, and hence the recommendation of adhering

is not informative for Agent 2.

Probability Principal Agent 1 Agent 2
1− c I2 V A
c

1+c
I1 A A

c2

1+c
I2 A A

Table 1: Recommendations in the one-shot game.

When Agent 1 gets the signal to violate, he knows that he is not inspected, and hence he is

better o� violating. If Agent 1 gets the signal to adhere, then with probability
c

1+c

c
1+c

+ c2

1+c

= 1
1+c

he is inspected and hence he is better o� adhering. It can be veri�ed that Agent 2 is also bet-

ter o� following the recommended actions. When both agents follow the recommendations,

their payo�s are (v1 = 1− c, v2 = 0), and the principal's loss attains the lower bound.

Under the optimal information revelation mechanism, whenever an agent is told to vio-

late, the agent knows that he will not be inspected. When an agent is told to adhere, he is

not sure whether he will be inspected or not: the expected probability that the agent will

be inspected is 1
1+c

.

Intuitively, when the principal follows the recommendations in Table 1, Agent 2 always

adheres and 1
1+c

inspection resources are allocated to him. As a result, c
1+c

inspection

resources are left for Agent 1. Agent 1 can be disciplined on an event E if on that event,

the conditional probability he is inspected is 1
1+c

. This implies that P (E) = c. On the

complement of E, Agent 1 violates.

Note the connection between the current exercise and the second-period of Figure 4

(private-monitoring game with T = 2). In the two-period private-monitoring game, the

agents' private history in the �rst period serves as a private signal in the second period.

However, unlike in the current case where private signals are costless, in the model with

private monitoring, sending signals by private history is �costly� for the principal: the prob-

abilities according to which agents are inspected in the �rst period a�ect not only the agents'

second-period beliefs, but also their �rst-period incentives.

In Appendix A.14 we analyze the two-period game, and show that the optimal information-

revelation rule in the two-period game is not a simple repetition of the solution to the one-shot
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game. This is because the principal can use the second period to better discipline agents in

the �rst period.

To attain the optimal information-revelation outcome, the principal has to privately com-

municate with each agent regarding her intent to inspect before agents take actions.35 There

are several practical di�culties that may prevent the implementation of this approach. First,

ethical concerns arise when the inspector privately tells an agent what to do, and, in par-

ticular, instructs an agent to violate. Such a behavior could be perceived by the public

as collusion. Moreover, in some cases, this may facilitate real collusion: to implement the

optimal outcome, the inspector has to draw a lottery that determines the identity of the

inspected agent (and send private signals accordingly) before agents take actions. If some of

the o�cials in the regulatory department are corrupt, a message leak is very likely.36

Such concerns are absent in our main model. First, the principal only publicly reveals

past inspection histories (or not), and there is no need to privately communicate with agents.

Second, even though the principal's future inspection plan is pre-announced (in the commit-

ment case), the lottery that determines the identity of the inspected agent can be drawn in

the last minute prior to inspection (and hence after the agents take actions), so the risk of

a message leak is absent.

This may be the reason why in practice, both pre-announced inspections (analogous

to the commitment case) and surprise inspections (analogous to the no-commitment case)

are commonly used and accepted (with or without a public disclosure of past inspection

results).37 Inspections under which the principal privately gives tip-o�s to agents are rarely

seen.

Another interesting question is whether there is an information design approach that

relies on public signals only, and still beats both public and private monitoring. We study

the two-period benchmark case in Appendix A.15 and show that when focusing on public

signals, the principal's ability to manipulate agents' beliefs is signi�cantly restricted: for

35For instance, to implement the payo�s in Table 1, with probability 1− c the principal privately advices
Agent 1 to violate and Agent 2 to adhere.

36Message leaks from a regulatory department are not so infrequent. For example, the New York Depart-
ment of Transportation conducts inspections of school bus companies to test the road-worthiness of their
buses. School-bus supervisors at the department of transportation in New York, however, were later known
to accept bribes from �rms in exchange for the information on upcoming inspections (Von Zielbauer, 2009).

37Applications that �t the commitment case include speed deterrence programs that announce and imple-
ment greater policy presence on certain highways (Eeckhout, Persico, and Todd, 2010), and safety inspections
managed by the Federal Aviation Administration, which conducts periodic aircraft inspections on civil avi-
ation (FAR 91.409b). On the other hand, inspections on workplace safety such as inspections by the Mine
Safety and Health Administration, restaurant hygiene inspections, and �rms' health and safety inspections
are typically conducted �on-surprise� and �t better the no-commitment scenario (see Jin and Leslie, 2009,
Levine, To�el, and Johnson, 2012, Dechenaux and Samuel, 2014).
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most parameters, public signals do not bene�t the principal. For a small set of parameters,

public signals can be advantageous. Nevertheless, the desirable level of public disclosure is

sensitive to changes in the parameters, and its analysis is rather complicated.

5 Conclusion

In this paper we study a model with a principal who tries to use her limited inspection

resource to induce adherence from multiple agents. The principal observes the full inspection

history, whereas each agent only observes what happens to himself. To use her inspection

resource most e�ciently, the principal decides not only on the inspection scheme (i.e., whom

to inspect after each history), but also whether to reveal information about past inspection

histories.

We show that when the number of agents is small and the principal has commitment

power, the principal can better discipline agents if she does not publicly disclose inspection

histories. The key observations are as follows. First, to improve upon the static game, a

successfully passed inspection has to come with a future payo� bonus to the agent; here, the

promise of the principal turning a blind eye with positive probability, so that the agent can

violate without penalty. As such, being inspected is good news for an agent. When the total

inspection resource is limited, less enforcement on certain agents implies greater enforcement

on other agents. Consequently, having the other agents being inspected in early periods is

bad news for an agent: he is subject to greater enforcement and hence violates less in the

long run. By keeping past inspections private and sometimes not inspecting anybody, the

principal can keep all agents on their toes in the long run: they now all have some lingering

doubt that their opponents may have just successfully passed an inspection and therefore

fear increased scrutiny themselves.

Several key assumptions are crucial for the above logic. First, there must exist a negative

correlation between the inspection intensities for agents. This happens if the inspection

resource is limited, or if the marginal inspection cost is increasing. If, instead, the inspection

cost is linear in the number of inspections, it is optimal for the principal to treat each agent

independently, and all monitoring structures yield the same optimal outcome.

Second, the superiority of private monitoring is signi�cant only when there is a small

number of players. When the numbers of agents and inspectors are larger, public monitoring

attains a more e�cient use of the inspection resource, and the gain from changing the

monitoring structure decreases.

Finally, the principal's commitment power allows her to take better advantage from con-

cealing information (that is, using private monitoring). This is because when the principal
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cannot commit, under private monitoring she has too many potential deviations that may

upset a desirable equilibrium. As a result, public monitoring may work better in this sce-

nario. The importance of commitment has the following policy implication: in environmental

protection problems or auditing problems, it is bene�cial to have all inspection rules made

public. This way, by concealing information about past inspections, the principal can further

improve her payo� by manipulating agents' beliefs.
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A Appendix A. Proofs

A.1 Proof of Theorem 1

Under public monitoring, since the second-period equilibrium outcome must be a Nash

equilibrium of the stage game, one violation in the second-period is unavoidable. Conse-

quently, the optimal PPE yields the principal a loss no less than δ. It is therefore su�cient

to show that under private monitoring, there exists an SE that yields the principal a loss

lower than δ. Consider the strategy pro�le σε =
(
σε1, σε2

)
displayed in Figure 4. The strat-

egy σε is similar to σpub, except that it assigns a positive probability to no inspection in the

�rst period.

We now specify the proper beliefs of the players. In each period an agent has only two

actions: Adhere and Violate. Let σkεi be the strategy that chooses the action prescribed by σεi

with probability k−1
k
, and the other action with probability 1

k
. Naturally, limk→∞ σ

k
εi = σεi.

The reader can verify that the sequence of beliefs (µε,k)k∈N induced by (σkε )k∈N converges as

k goes to ∞. Denote the limit belief system by µε:

µε(h) := lim
k→∞

µε,k(h), ∀h ∈H . (7)

Under µε, if an agent, say, agent i, is inspected in the �rst period, he believes that he will

be inspected with probability 0 in the second period. While if agent i is not inspected in the

�rst period, he assigns probability
1
2
−ε

1
2
+ε

to the event that the other agent j was inspected in

the �rst period and subsequently agent i will be inspected with probability 1 in the second

period; and agent i assigns probability 1−
1
2
−ε

1
2
+ε

to the event that no one was inspected in the

�rst period and subsequently he will be inspected with probability 1
2
in the second period.

Thus, if agent i is not inspected in the �rst period, he assigns probability 1
1+2ε

to the event

that he will be inspected in the second period.

We now argue that the strategy pro�le σε and the belief system µσε constitute an SE,

provided ε is su�ciently small.

We start by considering the second period. If an agent is inspected in the �rst period and

found adhering, then according to µε, he believes he will be inspected in the second period

with probability 0, and hence violating in the second period is the best response. As for the

agent who is not inspected in the �rst period, then according to µσε , he assigns probability
1

1+2ε
to himself being inspected in the second period. When ε is not too large (in fact, for

ε ≤ c
2
), the expected inspection probability this agent faces is larger than 1

1+c
, and hence

adhering in the second period is the best response.

Consider now the �rst period. Since δ > 1 − c, we have 1 > f(1
2
). Since the function f
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is decreasing, for su�ciently small ε (in fact, for ε ≤ 1
2
− f−1(1)), we have 1 > f(1

2
− ε), and

hence adhering is the best response for both agents in the �rst period.

To summarize, for ε ≤ min{ c
2
, 1
2
−f−1(1)}, the strategy pro�le σε together with the belief

system µε is an SE in Gpri
2 , and it yields the payo�s v1(σε) = (1

2
− ε)δ and v2(σε) = (1

2
− ε)δ

to the agents. Here v1(σε) + v2(σε) < δ, as desired.

A.2 The potential advantage of public monitoring

In this section, we argue that in principle, public monitoring has its advantage in repeated

interactions, even though this advantage is dominated by the advantage of private monitoring

when the principal has a commitment power.38

As shown in Figure 1, public histories are more informative than private histories. There-

fore, agents have a larger set of strategies under public monitoring. As a result, equilibria

under public monitoring need not be implementable under private monitoring. This point

is illustrated by the following example. Consider the equilibrium under public monitoring

given in Figure 9. We will argue that the same strategy pro�le is not feasible under private

monitoring.

Figure 9: An inspection strategy under public monitoring.

In the equilibrium shown in Figure 9, in the �rst period Agents 1 and 2 are inspected with

probabilities p∗ = 1
1+c+δ

and 1
1+c

, respectively. If Agent 1 is inspected and found adhering

in period 1, he is reward with no inspection in period 2. Since f(p∗) = 1, Agent 1 is better

o� adhering in period 1 (see Proposition 1). If Agent 2 is inspected and found adhering in

38When the principal has a commitment power, in all cases that we study in this paper, we can show
that private monitoring is weakly better than public monitoring. When the principal does not have a
commitment power, it is not di�cult to construct examples where private monitoring is strictly worse than
public monitoring (see Section 3.2).
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period 1, the inspection intensity for him in period 2 is 1. Since f( 1
1+c

) = 0, no future reward

is required, and Agent 2 also adheres in period 1. If no agent is inspected in the �rst period,

the principal inspects Agent 1 with probability 1 in the second period.

This strategy pro�le forms an equilibrium under public monitoring. In this equilibrium,

if Agent 1 is not inspected in period 1, his second period action depends on the public his-

tory: Agent 1 adheres if no agent is inspected, and Agent 1 violates if Agent 2 is inspected.

Yet, under private monitoring, this behavior is not a valid strategy pro�le: Agent 1 cannot

distinguish between the histories �no agent is inspected� and �Agent 2 is inspected�, and

hence his actions under these two histories must be the same.

This example shows that under public monitoring, the agent's future behavior can be

better attuned with the true history. This �exibility may bene�t the principal, as it enables a

more e�cient use of the inspection resource. Indeed, under private monitoring, because each

agent's private history is coarse, if at the private history h1 = N1 the expected inspection

intensity available for Agent 1 is low, then Agent 1 violates in all histories that are consistent

with h1 (that is, ∅ and I2). Whereas under public monitoring, there is more �exibility in

adjusting agent's behavior according to the true history, and it is possible to induce Agent

1 to adhere at ∅ and to violate only at I2.

Note that the above e�ect is absent in Fuchs (2007), where monetary transfer between

the principal and the agent is allowed, and the goal is to induce full compliance from the

agent (with minimum reward). As a result, the key issue in Fuchs (2007) is to relax the

incentive compatibility constraint of the agent. Private monitoring is better in this aspect,

since incentive compatibility has to be satis�ed in expectation rather than state by state. In

our model, since monetary transfer is not allowed and there is limited inspection resource,

violation is unavoidable. Hence, when designing the optimal scheme, a new driving force

takes e�ect: In addition to considering the resource constraint, how to optimally give a free

pass to the agents constitutes another important concern. Since public monitoring is more

�exible in allocating violations, this gives the principal a potential advantage.

A.3 Proof of Theorem 2

Step 1: Optimal PPE under public monitoring.

We start by identifying the optimal inspection scheme under public monitoring. We will

de�ne a strategy pro�le σ∗, under which b(1+ c+ δ)mc agents adhere in the �rst period, and

b(1+ c)mc agents adhere in the second period. We then show that it constitutes a PPE, and

argue that it is optimal for the principal under public monitoring. Let σ∗ be the following
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strategy pro�le (see Figure 10).

Denote

b = m− 1

1 + c
(b(1 + c+ δ)mc −m) ,

which is non-negative since δ < 1. We will divide the n agents into three groups: b(1+c+δ)mc
1-disciplined agents, b(1 + c)bc 2-disciplined agents, and n − b(1 + c + δ)mc − b(1 + c)bc
dummy agents. In the �rst period, exactly m 1-disciplined agents are inspected and all

1-disciplined agents adhere, while none of the other agents (2-disciplined or dummy) is

inspected and they all violate. The subset of m 1-disciplined agents who are inspected is

selected uniformly among all subsets of 1-disciplined agents of size m, hence the probability

that each 1-disciplined agent is inspected is m
b(1+c+δ)mc .

If some 1-disciplined agents who are inspected in the �rst period are found violating,

then the one who has the minimal index is punished, by being inspected in the second

period with probability 1. The other agents are not inspected in the second period and they

violate. Since under σ∗ all 1-disciplined agents adhere in the �rst period, the eventuality

that is described in this paragraph occurs with probability 0 under σ∗. We next describe the

behavior of σ∗ in the second period, assuming all 1-disciplined agents that were inspected in

the �rst period adhered.

In the second period, each 1-disciplined agent who was inspected in the �rst period (and

found adhering) is not inspected, while each 1-disciplined agent who was not inspected in

the �rst period is inspected with probability m
b(1+c)mc . In addition, each 2-disciplined agent is

inspected with probability m
b(1+c)mc (and they all adhere), and each dummy agent is inspected

with probability 0 (and they all violate).

Figure 10: Structure of σ∗.

The inspection strategy σ∗0 satis�es the resource constraint. Indeed, in the �rst period
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exactly m (1-disciplined) agents are inspected. In the second period, it can be veri�ed that

the sum of the 1-disciplined uninspected agent and 2 disciplined agent is b(1 + c)mc, and
hence the resource constraint is satis�ed.

We next argue that σ∗ is a PPE. Indeed, under σ∗, all agents who violate are inspected

with probability 0. In period 1, each 1-disciplined agent is inspected with probability
m

b(1+c+δ)mc ≥
1

1+c+δ
= f−1(1), and a successfully passed inspection leads to a free viola-

tion in period 2, therefore each 1-disciplined agent adheres. In period 2, each agent who

adheres is inspected with probability m
b(1+c)mc >

1
1+c

and they adhere. The number of agents

who adhere in the �rst period is b(1 + c+ δ)mc and the number of agents who adhere in the

second period is b(1 + c)mc.
We can now show that the PPE σ∗ is optimal for the principal under public monitoring.

In the second period, an agent adheres if and only if the inspection probability he faces is

at least 1
1+c

. Therefore, under any PPE, the number of agents who adhere in the second

period does not exceed b(1 + c)mc. We next turn to the �rst period. In the �rst period,

the maximum reward for a successful inspection is 1 (a free violation in the second period),

and hence to deter an agent from violating in the �rst period, he has to be inspected with

probability no less than f−1(1) = 1
1+c+δ

. Therefore, in any PPE, the number of agents who

adhere in the �rst period does not exceed b(1 + c + δ)mc. We conclude that under public

monitoring, the PPE σ∗ is optimal.

Step 2: Proof of part (i) of Theorem 2.

We here show that private monitoring can yield an outcome superior to σ∗. Suppose that

(c, δ) satisfy b(1 + c+ δ)mc < (1 + c+ δ)m and b(1 + c)mc < (1 + c)m. These two conditions

hold in particular when c and c+ δ are irrational, hence they hold for almost all (c, δ).

Consider a strategy pro�le σ′ under private monitoring that is identical to σ∗, except

that in the �rst period the principal assigns a positive probability ε to no inspection. If

no inspection is conducted in the �rst period, in the second period each agent is inspected

with probability 0 (this inspection probability is not important). An argument similar to

the one in the proof of Theorem A.1 can be applied to show that σ′ forms an SE, provided

ε is su�ciently small.

Since b(1+c+δ)mc < (1+c+δ)m, a slight decrease in the inspection intensity in the �rst

period does not a�ect the agents' �rst-period IC constraint, hence under σ′ the 1-disciplined

agents adhere in the �rst period. If a 1-disciplined agent is not inspected in the �rst period,

then in the second period he assigns a probability close to one to the event that the con-

tinuation play is the one indicated by σ∗ where he faces inspection intensity m
b(1+c)mc >

1
1+c

,

and a probability close to zero to the event that no agent was inspected in the �rst period
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in which case he faces an inspection intensity 0. When ε is su�ciently small, this agent is

better o� adhering in the second period. A similar argument shows that each 2-disciplined

agent adheres in the second period when ε is su�ciently small. Consequently, under σ′, in

the �rst period b(1+c+δ)mc agents adhere, as in σ∗. In the second period, with probability

1− ε the number of agents who adhere is b(1 + c)mc, and with probability ε the number of

agents who adhere is b(1 + c)mc+m > b(1 + c)mc. This improves the principal's payo�.

Step 3: Proof of part (ii) of Theorem 2.

First, we claim that, regardless of the monitoring structure, the expected number of

adhering agents in the second period is at most (1 + c)m. To this end, de�ne the following

random variables for each agent i:

Xi = agent i is inspected in period 2,

Yi = agent i adheres in period 2.

Fix some PPE. Because of the budget constraint,

n∑
i=1

Xi ≤ m. (8)

Denote by Fi agent i's information at period 2. Then

Yi = 1 if P (Xi = 1|Fi) >
1

1 + c
,

Yi = 0 if P (Xi = 1|Fi) <
1

1 + c
,

Yi = {0, 1} if P (Xi = 1|Fi) =
1

1 + c
.

In particular,

Yi ≤ (1 + c)P (Xi = 1|Fi). (9)
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Therefore,

n∑
i=1

E [Yi] ≤ (1 + c)
n∑
i=1

E [P (Xi = 1|Fi)]

= (1 + c)
n∑
i=1

E [E[Xi|Fi]]

= (1 + c)
n∑
i=1

E[Xi]

≤ (1 + c)m.

(10)

In Eq. (10), the �rst inequality follows from Eq. (9); the �rst equality holds since (Xi)
n
i=1

are Bernoulli random variables; the second equality holds because of the law of iterated

expectations; and the second inequality follows from Eq. (8).

Next we turn to the �rst period. Since in the two-period game the reward for a success-

fully past inspection is at most 1 (i.e., a free violation in the second period), the minimum

inspection intensity that can induce adherence in the �rst period is p∗ = f−1(1) = 1
1+c+δ

.

Therefore, the number of agents who adhere in the �rst period is at most b(1 + c + δ)mc.
Hence, the upper bound of adherence in any monitoring structure is δ(1+c)m+b(1+c+δ)mc.
As shown in Step 1, the optimal adherence in public monitoring is δb(1+c)mc+b(1+c+δ)mc.
The di�erence between the optimal PPE outcome and the upper bound of adherence in any

monitoring structure is at most δ. Part (ii) of Theorem 2 follows.

A.4 A formal de�nition of the non-atomic game

In Section 2 we de�ned the game with �nitely many inspectors and agents. Here we

formally de�ne the game Γ with a continuum of agents and inspectors. Repeated games

with a continuum of players have been studied, e.g., by Sabourian (1990), and Massó (1993).

The players in Γ are the principal and the continuum of agents who are represented by

the interval [0, 1]. An action of the principal is the set of inspected agents. Therefore, the

action set of the principal is the collection Fα of all Borel measurable subsets of [0, 1] whose

Lebesgue measure is at most α. The set of feasible actions for each agent is {A, V }. The

set of feasible joint actions of the agents is the set L of measurable functions from [0, 1] to

{A, V }. To allow for mixed strategies, we need to endow Fα and L with sigma-algebras.

To this end, we consider the set F of all Borel measurable subsets of [0, 1]. The set Fα is

a subset of F and L is equivalent to F (an element f ∈ L corresponds to the set of agents

who adhere under f). It is therefore su�cient to de�ne a sigma-algebra on F , and equip Fα
and L with the induced sigma-algebras. Consider then the sigma-algebra on F generated by
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all sets of the form

{G ⊆ [0, 1] : G is Borel measurable and µ(G) ≥ c},

where µ ranges over all measures on [0, 1] and c ranges over [0, 1].

A pure strategy for the principal is a set D1 ∈ Fα (the set of agents who are inspected in

the �rst period) together with a measurable function d2 : Fα × L 7→ Fα (that indicates the

set of agents who are inspected in the second period). A pure strategy pro�le for the agents

is a function a1 ∈ L (the agents' behavior in the �rst period), together with a measurable

function a2 : Fα ×L 7→ L (the agents' behavior in the second period). The strategies of the

principal and the agents must depend only on the information they possess. Therefore, we

require that d2(D1, a1) = d2(D1, a
′
1) whenever a1 = a′1 on D1: the inspection strategy in the

second period cannot depend on the �rst period behavior of agents that were not inspected

in the �rst period. For the agents, the condition imposed on strategy pro�les depends on the

monitoring structure. When monitoring is public, we require that a2(t;D1, a1) = a2(t;D1, a
′
1)

for every t ∈ [0, 1] such that a1 = a′1 on D1 ∪ {t}: agent t's choice in the second period can

depend on the �rst period's choices of the principal, the inspected agents, and agent t himself

(even if he is not inspected in the �rst period). When monitoring is private, we require that

a2(t;D1, a1) = a2(t;D
′
1, a
′
1) for every t ∈ [0, 1] such that a1(t) = a′1(t) and t ∈ D1 if and only

if t ∈ D′1: agent t's choice in the second period depends on his action in the �rst period and

on whether he was inspected in the �rst period.

The payo� function of each agent is similar to his payo� function in the game with �nitely

many agents and inspectors, while the payo� function of the principal is the integral of the

function in Eq. (2) w.r.t. the Lebesgue measure.

In the spirit of Aumman (1964), a mixed strategy is a measurable function that assigns

a pure strategy to each number in [0, 1], with the interpretation that the real number in

[0, 1] is selected according to the uniform distribution, and then the player executes the

corresponding pure strategy. Since we did not de�ne pure strategies for single players, but

rather strategy pro�les, this de�nition gives rise to correlated strategies for the agents. We

will study equilibria where the principal uses a mixed strategy and the agents use a pure

strategy pro�le, hence they do not randomize and the issue of correlation does not arise.

In the game with public monitoring, the concept of PPE is de�ned in the standard way.

The de�nition of SE in the game with private monitoring involves the concept of assessment

and the convergence of a sequence of mixed strategies. Since the set of players has the

cardinality of the continuum, this de�nition is more complex than the de�nition in �nite

games. Since the extension of the concept of SE to games with a continuum of players is not
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the focus of the paper, we will study Nash equilibria in the game with private monitoring.

In our construction of strategies for the principal, we will often use the following, for

0 < b < a: given a measurable set G of agents of size a, each agent in G is selected with

probability b. This verbal description translates into the following formal construction: Let

ϕ : [0, a]→ G be a measurable measure-preserving bijection. The principal uniformly selects

a number x ∈ [0, a], and then inspects all agents {ϕ(t) : t ∈ [x, x + b]}, where addition is

modulo a.

A.5 Proof of Theorem 3

The non-atomic game is formally de�ned in Appendix A.4.

First consider the case 1 ≥ (2 + c)α. Under public monitoring, a proof similar to the one

in Section A.3 applies, and the optimal PPE outcome yields the principal the upper bound

of adherence δ(1 + c)α + (1 + c + δ)α. The same strategy pro�le also constitutes a Nash

equilibrium under private monitoring, and hence Private ≈ Public in this case.

If 1 ≤ (1+c)α, then inspecting each agent with probability 1
1+c

in each period completely

deters violations, and is optimal under both monitoring schemes.

We �nally focus on the case (1 + c)α < 1 < (2 + c)α. Given the strategy pro�le of the

agents, denote by Ga the group of agents who adhere in period 1, and by Gv the group

of agents who violates in period 1. Let |Ga| and |Gv| be the Lebesgue measure of the two

groups, respectively. Necessarily, |Ga|+ |Gv| = 1.

For each agent i ∈ Ga, denote by p(i) the inspection probability for agent i in period 1.

Because of the resource constraint,
∫
i∈Ga p(i) di ≤ α.

Under both monitoring schemes, each agent who adheres in the �rst period (that is,

agents in Ga) has to obtain a continuation payo� of no less than f
(
p(i)

)
if he is inspected

in period 1. This implies that the total discounted number of violations is no less than

1− (1 + c)α:

�rst period violations︷︸︸︷
|Gv| +

lower bound on the second period violations︷ ︸︸ ︷∫
i∈Ga

δ · p(i) · f
(
p(i)

)
di

≥ |Gv|+
∫
i∈Ga

[
1− (1 + c)p(i)

]
di

= |Gv|+ |Ga| − (1 + c)

∫
i∈Ga

p(i)di

≥ 1− (1 + c)α.

(11)
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This lower bound is not the same as the one obtained in Step 3 in Appendix A.3. In

particular, the strategy pro�le σ∗ characterized in Step 1 in Appendix A.3 cannot be imple-

mented as a PPE in the current case. This is because under σ∗, the second-period compliance

level is (2 + c)α, which is larger than the size of the population in the current case, since

1 < (2 + c)α. Therefore, if the principal minimizes the �rst-period violations (that is, she

inspects as many agents as possible with probability 1
1+c+δ

), then she has to reward too

many agents in the second period, and hence some inspection resources are wasted in period

2. To better use the second-period resources, the principal treats some agents myopically

by inspecting them with a high probability 1
1+c

already in period 1. This way, fewer agents

adhere in period 1, but more agents adhere in period 2.

We next construct a PPE under public monitoring that yields the lower bound 1−(1+c)α.

We then argue that this outcome can also be implemented by a Nash equilibrium under

private monitoring. Note that if the inspector uses a myopic strategy, the minimum loss in

each period is 1− (1 + c)α, which yields a total loss of (1 + δ) ·
(
1− (1 + c)α

)
.

It turns out that the following strategy pro�le σpub
inf is optimal under public monitoring.

Let t1 = (1 + c+ δ)
(
1− (1 + c)α

)
, and t2 = t1 + (1 + c)

(
α− [1− (1 + c)α]

)
. Note that t2 is

smaller than 1 because (1 + c)α < 1, and it is larger than t1 because (2 + c)α > 1. Agents

are divided into three groups: G1 = [0, t1], G2 = [t1, t2], and G3 = [t2, 1].

• Strategy of the principal:

� In the �rst period

∗ Agents in G1 are inspected with probability 1
1+c+δ

.

∗ Agents in G2 are inspected with probability 1
1+c

.

∗ Agents in G3 are inspected with probability 0.

� In the second period

∗ Agents in G1 who were inspected and found adhering in period 1 are inspected

with probability 0.

∗ All other agents are inspected with probability 1
1+c

, irrespective of the history.

∗ Punishment: If some agents in G1 are insepcted in the �rst period are found

violating, then the one who has the minimal index is punished by being

inspected in the second period with probability 1. The other agents are not

inspected in the second period.39

39Since under σpub
inf

all agents in G1 adhere in the �rst period, the eventuality that is described in this

paragraph occurs with probability 0 under σpub
inf

.
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• Strategy of the agents:

� In the �rst period, agents in G1 and G2 adhere. Agents in G3 violate.

� In the second period, agents in G1 who were inspected in period 1 violates. All

other agents adhere.

The inspection strategy σpub
inf,0 satis�es the budget constraint. Indeed, in period 1, the

required inspection resource is

1

1 + c+ δ
· |G1|+

1

1 + c
· |G2| = α.

The size of the set of agents in G1 who are inspected in period 1 is 1
1+c+δ

· |G1| = 1− (1+c)α.

Therefore, in period 2, the size of the set of agents who are inspected with probability zero

is 1− (1+ c)α, and the set of remaining agents has the size (1+ c)α. The inspection resource

required in period 2 is 1
1+c
· (1+c)α = α. Thus, the budget constraint is met in both periods.

We now verify that the agents' strategies in σpub
inf are best response to the principal's

strategy σpub
inf,0. This is clear for agents in G2 and G3 (in both periods), and for agents in G1

(in the second period). Regarding agents in G1 in the �rst period, since their continuation

payo� is 1 upon a successfully passed inspection, and since they are inspected in period 1

with probability 1
1+c+δ

= f−1(1), adhering is a best response for them in period 1.

We �nally compute the number of violations under σpub
inf . It can be veri�ed that

L0(σ
pub
inf ) = |G3|+ δ ·

(
1− (1 + c)α

)
= 1− α(1 + c).

As shown in Eq. (11), this is the lower bound on the amount of violations in equilibrium,

and hence σpub
inf is optimal.

Note that agents' strategies in σpub
inf depend only on (i) which group the agent belongs to,

and (ii) the agent's own inspection history. Therefore, the same strategy pro�le constitutes

a Nash equilibrium under private monitoring, and it is optimal as well.

A.6 Proof of Theorem 4

We �rst illustrate the superiority of private monitoring in this case with an example. Take

c = 0.96 and δ = 0.9, so that the requirement in Proposition 4 is satis�ed. In the one-shot

game, an agent adheres if and only if he is inspected with probability at least 1
1+c

= 0.51.

Under public monitoring, in the optimal PPE, both agents adhere in the �rst period, and

one of the agents violates in the second period (the identity of the violating agent depends

on the �rst-period history).
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We now construct an equilibrium σpri
nc under private monitoring that yields the principal

a better payo� (see Figure 11). In this equilibrium, both agents adhere in the �rst period.

In the second period, the agents' expected payo�s are (v1 = 1
3
, v2 = 1

3
), regardless of the

principal's �rst-period action.

Figure 11: Strategy pro�le σpri
nc under private monitoring with no-commitment (example).

• In the �rst period inspect each agent with probability 0.45. Both agents adhere.

• A public correlation device is used at the beginning of the second period. With proba-

bility 1
3
the correlation device shows L (left), with probability 1

3
it shows M (middle),

and with probability 1
3
it shows R (right).

� Suppose Agent 1 is inspected in the �rst period and found adhering.

∗ If the correlation device shows L, then Agent 1 (resp., Agent 2) is inspected

with probability 0 (resp., probability 1). Agent 1 violates and Agent 2 ad-

heres.

∗ If the correlation device shows M , then Agent 1 (resp., Agent 2) is inspected

with probability 0.51 (resp., probability 0.49). Both agents adhere.

∗ If the correlation device shows R, then Agent 1 (resp., Agent 2) is inspected

with probability 1 (resp., probability 0). Agent 1 adheres and Agent 2 vio-

lates.
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The behavior of the inspector and agents in the remaining cases is as displayed

in Figure 11.

• Punishment: if an agent is found violating in the �rst period, then in the second period

he is inspected with probability 1 and the other agent is inspected with probability 0.

Agent i adheres and the other agent violates.

Note that Agent 1 cannot distinguish between the history �no agent is inspected� and

�Agent 2 is inspected�. Therefore, if, say, Agent 1 is not inspected in the �rst period and the

public correlation device shows R, then Agent 1 assigns probability 0.1
0.1+0.45

that he will be

inspected with probability 1, and with the remaining probability he will be inspected with

probability 0.49. This yields an expected inspection probability of 0.58 to Agent 1, and he is

better o� adhering. By a similar argument, together with the observation that f(0.45) < 1
3
,

one can verify that under the strategy pro�le σpri
nc , the agents are taking best responses to

the inspection strategy.

Since the principal has no commitment power, it remains to verify that the principal has

no incentive to deviate. Since inspection is costless, the principal's payo� depends only on

the agents' actions. In the second period the principal cannot bene�t from deviation, since

her deviation does not change the actions of the agents. Regardless of the principal's �rst

period action, both agents adhere in the �rst period, and their second-period payo�s are

(v1 = 1
3
, v2 = 1

3
), which yields the principal a loss 2

3
in the second period. Therefore, the

principal has no incentive to deviate also in the �rst period. This equilibrium is superior to

the optimal PPE under public monitoring, as claimed.

The formal proof of Proposition 4 follows the example. Consider the strategy pro�le σpri
nc

shown in Figure 12, where p̂ := f−1(1
3
). It can be veri�ed that if δ > (1 − c) · 3(1+c)

c
, then

p̂ < 1
2
. The interpretation of the �gure is the same as the one in the example. The di�erences

from the example are: (1) in the �rst period, each agent is inspected with probability p̂ =

f−1(1
3
) and both agents adhere; (2) if Agent 1 is inspected in the �rst period and the public

correlation device shows M , then Agent 1 is inspected with probability 1
1+c

, and Agent 2 is

inspected with probability c
1+c

; (3) if Agent 2 is inspected in the �rst period and the public

correlation device shows R, then Agent 1 is inspected with probability c
1+c

and Agent 2 is

inspected with probability 1
1+c

. The agents' actions under each history are the same as in

the example.

Since in the �rst period both agents adhere, and in the second period both agents adhere

with a positive probability, the strategy pro�le σpri
nc yields the principal a better payo� than

the optimal PPE under public monitoring. We next verify that it is an equilibrium.

51



Figure 12: Strategy pro�le σpri
nc under private monitoring with no-commitment.

For the strategy pro�le σpri
nc to be an SE, we �rst study the conditions under which the

agents have no incentive to deviate. For the second period, these conditions are

p̂

1− p̂
· 1 +

1− 2p̂

1− p̂
· 0.5 ≥ 1

1 + c
, (12)

and
p̂

1− p̂
· c

1 + c
+

1− 2p̂

1− p̂
· 1 ≥ 1

1 + c
. (13)

Eq. (12) always holds, and Eq. (13) holds if δ > (1−c) · 3(1+c)
c

, as assumed in the proposition.

Since f(p̂) = 1, in the �rst period both agents are better o� adhering. We now verify

that the principal cannot bene�t from deviating. Since no matter what the action of the

principal in the �rst period is, the agents' second period payo�s are always (v1 = 1
3
, v2 = 1

3
),

the principal cannot bene�t from deviation. In the second period, since the principal's action

does not a�ect her own payo�, deviation is also non-pro�table, as desired. This completes

the proof that when δ > (1− c) · 3(1+c)
c

, the strategy pro�le σpri
nc shown in Figure 12 is an SE.
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A.7 Proof of Theorem 5

Case 1: α ≥ 1
1+c

. In this case there are su�cient resources to inspect all agents with

probability 1
1+c

, and thereby deter violations in both periods regardless of the monitoring

structure. In particular, Public ≈ Private.

Case 2: α ≤ 1
2+2c+δ

. By an argument similar to the one in Step 3 in Appendix A.3, the

expected number of adherences in the second period is at most (1 + c)α, and the number of

adherences in the �rst period is at most (1 + c+ δ)α. That is, the upper bound of adherence

in any monitoring structure is δ(1 + c)α + (1 + c+ δ)α.

We next construct for the model with public monitoring a PPE that yields the principal

the upper bound of adherences, and then show that a similar strategy pro�le constitutes a

Nash equilibrium under private monitoring. Note that since the principal has no commitment

power, the strategy pro�le σ∗ characterized in Step 1 in Appendix A.3 is no longer an

equilibrium under private monitoring: In σ∗, each 1-disciplined agent who was inspected in

period 1 violates in period 2, and each 1-disciplined agent who was not inspected in period

1 adheres in period 2. Therefore, the principal bene�ts by deviating and inspecting no 1-

disciplined agent in the �rst period. To �x this problem, we need to modify the inspection

scheme so that the principal's second-period payo� is independent of her �rst-period action.

Let σ∗nc be the following strategy pro�le: Denote t1 = (1 + c+ δ)α and t2 = (1 + c+ δ)α+

(1 + c)α. Divide the population [0, 1] into three groups: agents in [0, t1] are 1-disciplined

agents, agents in [t1, t2] are 2-disciplined agents, and agents in [t2, 1] are dummy agents. The

assumption 1 ≥ (2 + 2c + δ)α guarantees that the upper bound of the 2-disciplined agent,

t2, is at most 1.

In the �rst period, all 1-disciplined agents are inspected with probability 1
1+c+δ

and they

all adhere, while each of the other agents is inspected with probability 0 and they all violate.

As in Step 1 in Appendix A.3, if a 1-disciplined agent is inspected and found violating,

then he is punished by being inspected in the second period with probability 1. This situation

does not occur in equilibrium. We next describe the behavior of σ∗nc in the second period,

assuming all 1-disciplined agents adhere in the �rst period.

In the second period, each 1-disciplined agent is inspected with probability zero (and they

all violate), regardless of whether he is inspected in the �rst period. Each 2-disciplined agent

is inspected with probability 1
1+c

(and they all adhere). Each dummy agent is inspected

with probability 0 (and they all violate). By an argument similar to the one in Step 1 in

Appendix A.3, σ∗nc forms a PPE under public monitoring. One can verify that this PPE

yields the principal the upper bound of adherence.

In this construction, the principal cannot change the number of violations by deviating
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from her prescribed strategy σ∗nc,0. Since in equilibrium the inspection intensity for each

agent depends only on which group he belongs to, the same strategy pro�le constitutes a

Nash equilibrium under private monitoring. Therefore, Public ≈ Private in this case.

Case 3: 1
2+2c+δ

< α < 1
2+c

. Like in the previous case, the expected number of adherences

in the second period is at most (1 + c)α, and the number of adherences in the �rst period is

at most (1 + c+ δ)α.

Consider the non-atomic public monitoring version of the strategy pro�le that is similar

to σ∗ in Step 1 of Section A.3. The only di�erence is that to prevent the principal from

deviating, if the agents observe that in the �rst period the total mass of the agents who are

inspected is not equal to m, then they punish the principal by violating in period 2 (as a

best response, the principal inspects no agent in this eventuality). By an argument similar

to the one in Step 1 of Section A.3, it can be veri�ed that the modi�ed version of σ∗ is a

PPE of the no-commitment problem.

We next argue that under private monitoring, the lower-bound violations cannot be sup-

ported as an equilibrium. Suppose σpri
nc is the optimal equilibrium under private monitoring.

Let A be the set of agents who adhere in period 1 under σpri
nc . In the second period, it is

without loss of generality to assume that an agent who violates is not inspected. This is

because an inspected violation hurts the agent without bene�ting the principal. Under σpri
nc ,

the continuation payo� of any agent if he is not inspected in period 1 (denoted vni) must be

no less than his continuation payo� if he is inspected and found adhering in period 1 (denoted

va). Indeed, if vni < va, then when the agent is not inspected in period 1, he violates less

in period 2. The principal, whose goal is to minimize violations, bene�ts from reducing the

inspection probability on this agent. Note that under private monitoring, this deviation of

the principal cannot be observed by agents.

To generate the lower-bound violations, necessarily a mass of (1 + c+ δ)α agents adhere

in period 1. Denote the set of these agents by A . Attaining the lower bound can be done

only by inspecting each of the agents in A with probability 1
1+c+δ

in period 1,40 and reward-

ing a successfully passed inspection with a free violation in the future. This implies that

for any agent in A , the continuation payo� va ≥ f( 1
1+c+δ

) = 1. By the argument above,

vni ≥ va ≥ 1. Since the continuation payo� is bounded above by 1, we have va = vni = 1.

Therefore, the second-period violation is at least (1 + c+ δ)α. This implies that the second

period adherence is at most 1 − (1 + c + δ)α, which is strictly lower than (1 + c)α since

40If the inspection probability for any agent in A is lower than 1
1+c+δ , then necessarily this agent violates

in period 1. If the probability is higher than 1
1+c+δ , then because of the resource constraint, some of the

other agents in A must be inspected with probability lower than 1
1+c+δ and violate.
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α > 1
2+2c+δ

. Consequently, the lower bound on the number of violations cannot be attained

under private monitoring.

Case 4: 1
2+c

< α < 1
1+c

. By an argument similar to the one in Appendix A.5, the lower

bound on the number of violations is 1 − (1 + c)α > 0 in both monitoring structures.41

Moreover, under public monitoring, this lower bound can be attained as an equilibrium by

the strategy pro�le σpub
inf characterized in Appendix A.5 with slight modi�cations to prevent

the principal from deviating: As long as 1 − (1 + c)α agents in G1 and α − [1 − (1 + c)α]

agents in G2 are inspected in period 1, agents follow the strategy prescribed in σpub
inf in the

second period. Otherwise, each agent is inspected with probability zero and he violates in

period 2. This modi�cation guarantees that the principal has no pro�table deviations.

It remains to verify that the lower bound on the number of violations cannot be attained

as an equilibrium outcome under private monitoring.

Denote by Ga the set of agents who adhere in period 1, and by Gv the set of agents who

violate in period 1. Let |Ga| and |Gv| be the Lebesgue measure of the two sets, respectively.

Necessarily, |Ga|+ |Gv| = 1.

Under the optimal Nash equilibrium, for each agent i ∈ Ga, denote by p(i) the inspection

probability for agent i in period 1. Because of the resource constraint,
∫
i∈Ga p(i) ≤ α.

For agent i in Ga to adhere in period 1, upon being inspected and found adhering, this

agent's continuation payo� has to be at least f
(
p(i)

)
. Moreover, as argued in the previous

case, since the principal has no commitment power, to form an equilibrium under private

monitoring, this agent's continuation payo� upon no-inspection has to be at least f
(
p(i)

)
as

well.

This implies that the expected number of violations under a Nash equilibrium is not

smaller than

�rst period violations︷︸︸︷
|Gv| +

lower bound on the second period violations︷ ︸︸ ︷∫
i∈Ga

δ · f
(
p(i)

)
di

> |Gv|+
∫
i∈Ga

δ · p(i) · f
(
p(i)

)
di

≥ 1− (1 + c)α,

(14)

where the second inequality in Eq. (14) follows from Eq. (11). That is, private monitoring

cannot attain the lower-bound payo� 1 − (1 + c)α in the current case. This completes the

41In Case 3, the number of violations 1− (1+c)α is lower than the number of violations in σ∗nc and cannot
be attained in equilibrium.
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proof of Theorem 5.

A.8 Linear inspection cost

In this section we discuss the case in which the inspection cost is linear in the number

of inspections, and we argue that for an inspection problem that involves n ≥ 2 agents,

m ≥ 1 inspectors, and T ≥ 2 periods, both public monitoring and private monitoring yield

the principal the same optimal payo�. Indeed, since inspection costs are linear, under both

monitoring structures the principal is better o� treating each agent independently, and hence

the monitoring structure does not play a role in improving the principal's payo�. We next

provide the detailed argument.

We �rst argue that the principal is better o� treating each agent independently under

public monitoring. Let σ∗ be the optimal PPE. We turn to calculate the loss to the principal

under σ∗ that arises due to each agent: the expected loss due to violations of each agent

plus the expected loss due to inspections made on each agent. Denote by i the agent who

imposes the lowest loss vi to the principal under σ∗. Since at each history agent i cares only

about the inspection probability he faces, and since the cost of inspection is linear, by using

public correlation device to mimic the original play path, we can construct a new inspection

strategy under which agent i imposes the same loss L0 and the inspection probability for

agent i is independent of the inspection history for other agents. We next use the same

inspection strategy to inspect the other n − 1 agents, so that the principal's total loss is n

times the loss due to agent i. This procedure necessarily yields the principal a loss no larger

than the loss in σ∗, and hence it is optimal as well. Consequently, one of the principal's

optimal inspection strategy is to treat the n agents independently.

We next argue that under private monitoring the principal is better o� treating each

agent independently. Consider an SE σpri. Suppose that under σpri, at a private history

h1 of Agent 1, the expected inspection probability Agent 1 faces is p. Denote by I1 the

information set containing h1. Modify the principal's strategy so that at every play a ∈ I1,

Agent 1 faces the inspection probability p. Because of the linearity of the inspection cost,

this modi�cation does not change the average inspection cost. Suppose that we do the

same modi�cation simultaneously at all information sets of all agents, and denote the new

inspection strategy by σ̂pri
0 . Under σ̂pri

0 , the inspection probability each agent faces at every

information set is the same as under σpri
0 , and hence his best response remains the same.

This implies that
(
σ̂pri
0 , (σpri

1 , σpri
2 , ..., σpri

n )
)
generates the same loss to the principal as σpri,

and with the same inspection costs.

Therefore, without loss of generality we can assume that under an SE of Gpri
T , at every
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information set Ii of agent i, all plays in Ii induce the same inspection probability for

agent i. In other words, the inspection probability an agent faces in each period depends

only on his private history, and is independent of the inspection for the other agent. Since

in the single-agent problem the monitoring structure plays no role, it follows that when the

inspection cost is linear, the two information structures yield the same expected loss to the

principal.

A.9 Proof of Theorem 6

Since δ > 1−c, we have f(1
2
) < 1. In the two-period game, the optimal PPE under public

monitoring, denoted σpub, is as described below (see Figure 13). In particular, it does not

involve the use of the second inspection. This strategy is a variation of the one constructed

for the case r1 = 0 and r2 = ∞ (or equivalently, m = 1 and n = 2), while minimizing the

probability of inspection as much as possible (so as to minimize the inspection cost).

Let p∗ := f−1(1). Note that p∗ < 1
2
.

• In the �rst period, inspect each agent with probability p∗. Both agents adhere.

• If the agent, denoted agent i, is inspected in the �rst period and found adhering, then

in the second period agent i is inspected with probability 0 and the other agent is

inspected with probability 1
1+c

. agent i violates and the other agent adheres.

• If no agent is inspected in the �rst period, then in the second period Agent 1 is

inspected with probability 0 and the other agent is inspected with probability 1
1+c

.

agent i violates and the other agent adheres.

• Punishment: if an agent is found violating in the �rst period, then in the second period

he is inspected with probability 1
1+c

and the other agent is inspected with probability

0. agent i adheres and the other agent violates.

The PPE σpub is optimal because (1) in the last period it is optimal to let one agent

violate and one agent adhere, and (2) it minimizes the inspection costs in the �rst period

under the constraint that each agent is inspected with probability at least f−1(1).

The principal's total loss is

L0(σ
pub) =

loss from violations︷ ︸︸ ︷
0 + δ · 1 +

inspection cost︷ ︸︸ ︷
2p∗ · r1 + δ · 1

1 + c
· r1 . (15)

We next consider the following strategy pro�le under private monitoring, denoted σpri

(see Figure 14).
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Figure 13: Optimal PPE under public monitoring.

• In the �rst period, inspect each agent with probability p∗. Both agents adhere.

• If agent i is inspected in the �rst period and found adhering, then in the second period

agent i is inspected with probability 0 and the other agent is inspected with probability

q1. Agent i violates and the other agent adheres.

• If no agent is inspected in the �rst period, then in the second period each agent is

inspected with probability q2. Both agents adhere.

• Punishment: if an agent is found violating in the �rst period, then in the second period

he is inspected with probability 1
1+c

and the other agent is inspected with probability

0. agent i adheres and the other agent violates.

Figure 14: Strategy pro�le σpri under private monitoring.

We claim that, if
p∗

1− p∗
· q1 +

1− 2p∗

1− p∗
· q2 =

1

1 + c
, (16)

then σpri is an SE. Indeed, suppose that Eq. (16) holds. If agent i is not inspected in the

�rst period, then he assigns probability 1
1+c

to the event that he will be inspected in the

58



second period, and hence adhering is the best response. Since f(p∗) = 1, in the �rst period

adhering is also a best response.

Next we claim that there exist q1 and q2 that satisfy Eq. (16), where 1
1+c

< q1 < 1 and

0 < q2 <
1
2
. Indeed, when q1 = 1 and q2 = 1

2
, the left-hand side of Eq. (16) is 1+c+δ

2c+2δ
, which is

strictly larger than 1
1+c

. When q1 = 1
1+c

and q2 = 0, the left-hand side of Eq. (16) is strictly

smaller than 1
1+c

. By the continuity of the left-hand side of Eq. (16) with respect to q1 and

q2, the claim follows. Suppose (q∗1, q
∗
2) is one solution with the desired properties.

We argue that when q1 = q∗1 and q2 = q∗2, the SE σpri yields the principal a loss lower

than that in σpub. Indeed, the principal's loss in this case is

L0(σ
pri) =

loss from violations︷ ︸︸ ︷
0 + δ · 2p∗ +

inspection cost︷ ︸︸ ︷
2p∗ · r1 + δ ·

(
2p∗ · q1 · r1 + (1− 2p∗) · 2q2 · r1

)
= δ · 2p∗ + 2p∗ · r1 + δ · 2r1 ·

1− p∗

1 + c
.

(17)

The second equality in Eq. (17) follows from Eq. (16). Comparing Eq. (17) with Eq. (15),

we see that

L0(σ
pub)− L0(σ

pri) = δ · (1− 2p∗) ·
(

1− r1
1 + c

)
. (18)

Since r1 < 1 + c by the divergence condition, L0(σ
pub)− L0(σ

pri) > 0, so private monitoring

yields the principal a lower loss, as claimed.

A.10 Pairs (r1, r2) that violate the divergence condition

If r1 ≥ 1 + c, then under both private and public monitoring, in the second period,

on the equilibrium path both agents are inspected with probability 0 and both violate.

Indeed, suppose to the contrary, that on the equilibrium path, in the second period agent i

is inspected with probability p ≥ 1
1+c

. In this case, the principal bene�ts from reducing the

inspection probability to 0. On the one hand, the additional violation in the second period

is compensated by a lower inspection cost (since 1 < p · r1), and on the other hand, this

increases agent i's payo� on the equilibrium path and hence it does not alter his �rst-period

best response action.

Therefore, the inspection probability an agent faces in the second period remains zero,

regardless of which equilibrium path is selected in the �rst period. This implies that the

monitoring structure does not play a role and hence both public and private monitoring yield

the principal the same payo�.
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If r2 ≤ 1+c+ c(1+c−r1)
1−c , then having both agents inspected and adhere is optimal already in

the one-shot game. Since the inspection cost that induces full compliance is �xed regardless

of the monitoring structure,42 the principal can save inspection cost only by sacri�cing the

compliance level. In particular, there are cases where the principal could have pro�tably

induce full compliance, but she deliberately allows agents to violate in the second period, as

a cheaper means to deter violations in the �rst period. We �nd such cases less relevant to

the main focus of this paper, which is to improve compliance by modifying the monitoring

structure, and hence we omit the detailed analysis.

A.11 Conditions under which Lpub
T = LL in the T -period game

In this section we provide conditions under which Lpub
T = LL (or, alternatively, Lpub

T >

LL).

Proposition 3. Suppose there are two agents and one inspector, and δ > 1−c2
c
. The set of

(c, δ) under which Lpub
T > LL shrinks in T , and it converges to the area δ > max

(
1−c2
c
, 1+c
2+c

)
.

Proof. See Appendix B.1.

Figure 15: Parameter for which Private � Public for every T ≥ 2.

Proposition 3 asserts that, when T increases, the set of parameters (c, δ) under which

public monitoring does not attain LL shrinks, and as T →∞ it converges to the shaded area

42Under both monitoring structures, to induce full compliance, in the second period each agent has to
be inspected with probability no less than 1

1+c , regardless of the history. Therefore, an inspection cost of

r1 + 1−c
1+cr2 is inevitable in period 2. Since on the equilibrium path both agents obtain zero, to deter a

violation in period 1, an inspection intensity 1
1+c is also needed (otherwise, the agent who adheres is subject

to a positive continuation payo�). Consequently, an inspection cost of r1 +
1−c
1+cr2 is also inevitable in the

�rst period.
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of Figure 15. Recall that by Theorem 7, Lpub
T > LL implies Private � Public. Therefore, as

a corollary, if δ > max
(

1−c2
c
, 1+c
2+c

)
, Private � Public in any T -period game43with T ≥ 2.

We next discuss why a longer period of interaction bene�ts the principal under public

monitoring (and hence allows her to attain the best feasible payo� LL).

Consider a simpli�ed scenario where the principal faces only one agent, and the inspection

intensity available for this agent is p < 1
1+c

. In the one-shot game, the agent necessarily

violates, in�icting a loss of γ1 := 1 to the principal.

Now add one additional period to this game. In the �rst period of the two-period game,

if the agent is inspected and found adhering44 in period 1, he gets a continuation payo� of

1. Whereas if he is not inspected, the game continues as in the one-shot game. This scheme

is optimal when the agent is not too impatient. Due to discounting, the loss of the principal

is reduced to γ2 := δ ·
(
p · 1 + (1− p) · γ1

)
< γ1.

Suppose we add a third period to the two-period game. Again, in the �rst period, the

agent's continuation payo� upon being inspected and found adhering45 remains 1. Whereas

if he is not inspected, the game continuous as a two-period problem. The principal's loss is

further reduced to γ3 := δ ·
(
p ·1 + (1−p) ·γ2

)
< γ2. This argument applies inductively when

additional periods are added. Therefore, a larger T helps to delay violations, which lowers

the principal's equilibrium loss, and makes it more likely that the lower-bound loss can be

attained under public monitoring.

Note the di�erence between a large T and a large δ. When δ increases, the same number

of future violations becomes more valuable for the agent. The lower-bound payo� 1 − c is
hence more di�cult to implement in such cases. As a result, a large δ makes Private � Public

easier to hold, and yields private monitoring a larger advantage.

A.12 Bene�t from detecting violations

Consider the model with two agents and one inspector, and suppose the principal bene�ts

from detecting violations. In this section, we argue that if the principal has no commitment

power, then full defection in both periods is the unique equilibrium under both public and

43This result does not contradict the folk theorem. Indeed, even if the best feasible outcome can be
attained in public monitoring as δ → 1, private monitoring may be superior for each su�ciently high
discount factor. The degree of the superiority, however, may shrink to zero as δ → 1.

44If the agent is found violating in period 1, he is punished most severely by being inspected with proba-
bility 1 in the second period.

45To yield the agent a reward of 1, a violation in the third period is not enough � from the perspective
of period 2, a violation in period 3 yields him a payo� of δ < 1. Therefore, in addition to a violation in
period 3, with a positive probability the agent is not inspected and violates already in the second period.
This implementation requires the use of the public correlation device in period 2.
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private monitoring.

First note that in the one-shot game, necessarily both agents violate in equilibrium.

Indeed, suppose, instead, one agent adheres with a positive probability. Then this agent must

be inspected with probability at least 1
1+c

. This implies that the other agent is inspected

with a low probability and he violates. In this case, the principal is better o� deviating from

the prescribed strategy and inspecting the violator with probability 1, as it maximizes the

probability of catching a violation.

Now consider the two period public monitoring problem. In the second period, agents

necessarily play the unique Nash equilibrium (full defection) regardless of the history. Since

agents' �rst-period actions do not a�ect their second-period payo�, they play the unique

Nash equilibrium (again, full defection) also in the �rst period.

Next consider the private monitoring problem. For simplicity, we neglect the use of the

public correlation device.46 Recall that after the �rst period, there are �ve private histories

for the principal: A1, V1, A2, V2, and ∅ (see Figure 1). The principal's second-period

inspection strategy (and hence the agents' best responses) depend only on the principal's

private history.47 We next refer to the principal's private history simply as history.

Step 1: Deriving Figure 16.

Figure 16: The probability agents violate at each history.

We now consider the probability of violation for each agent in the second period. Since

Agent 1 cannot distinguish between histories in {∅, A2, V2}, the probability he violates at

these histories must be the same. The same argument applies to Agent 2 at histories

{A1, V1, ∅}. See Figure 16 for an illustration, where r and q represents the violation proba-

bility for Agent 1 and 2, respectively.

We next argue that at histories in {A1, V1, A2, V2}, the probability that Agent 1 violates

equals to the probability that Agent 2 violates.

Consider history A1, and suppose to the contrary that at this history the probability that

46The proof in this section can be readily generalized to the game that involves public correlation device,
since our argument applies to each realization of the public correlation device.

47Since the agent's private history is more coarse than that of the principal, the agent's action in period
2 depends on the signal he received, which determines his belief over the principal's private history.

62



Agent 1 violates is x1, which is di�erent from q. If x1 < q, then Agent 2 violates with a

probability higher than Agent 1. The principal, who does not have a commitment power and

has an incentive to catch violations, is best o� inspecting Agent 2 with probability 1. Since

Agent 1 knowns that the real history is A1, he knows that he is inspected with probability

zero, and hence he violates with probability x1 = 1, a contradiction to the assumption that

x1 < q. Suppose next x1 > q. In this case, the principal is best o� inspecting Agent 1 with

probability 1. As a result, Agent 1 violates with probability x1 = 0, a contradiction to the

assumption that x1 > q.

The same logic applies to histories V1, A2, and V2. Note that this logic does not apply

to history ∅, since even if an agent is inspected with probability 0 in this eventuality, he is

uncertain about the true history, and hence he may still choose to adhere with a positive

probability.

Step 2: The case r 6= q.

Suppose without loss of generality that r < q. Since r < q ≤ 1, at histories A2 and V2

Agent 2 adheres with a positive probability. Since Agent 2 knows the true history in these

events, he must be inspected with an inspection probability at least 1
1+c

. As for Agent 1,

r < 1 implies that he adheres with a positive probability if he is not inspected in period

1. Since at histories A2 and V2, Agent 2 is inspected with probability at least 1
1+c

, in these

histories Agent 1 is inspected with probability less than c
1+c

. To induce Agent 1 to adhere,

it must be the case that at history ∅, Agent 1 is inspected with probability at least 1
1+c

.

However, if no agent is inspected in period 1, then Agent 2 violates with a higher probability

than Agent 1 (since q > r), which implies that in the second period the principal is best

o� inspecting Agent 1 with probability 0, a contradiction. Therefore, r < q cannot be an

equilibrium outcome.

Step 3: The case r = q.

If r = q = 1, then all agents violate in period 2. This can be attained as an equilibrium

with the principal inspecting each agent with probability 1
2
regardless of the history. If

r = q < 1, then regardless of the history, in the second period both agents adhere with a

positive probability. Since an agents assigns a positive probability to adherence only if the

expected inspection intensity he faces is at least 1
1+c

, in such an equilibrium necessarily each

agent believes that he is inspected with probability at least 1
1+c

regardless of the history.

This contradicts the resource constraint. When r = q = 1, agents' �rst-period actions

do not a�ect their second-period payo�, and hence they play the unique Nash equilibrium

(both violating) in the �rst period. As a result, full defection in both period is the unique

63



equilibrium under private monitoring.

A.13 Proof of Proposition 2

First note that for δ > 1 − c, the principal can attain an equilibrium loss of δ by using

the inspection scheme shown in Figure 3. Therefore, under the optimal inspection scheme

with private monitoring, necessarily both agents adhere in period 1 � a violation in period

1 causes a loss of 1 > δ to the principal, which is clearly not optimal.

There are two approaches to deter an agent from violating in the �rst period. The �my-

opic approach� is to inspect an agent with probability at least 1
1+c

. In this case, an agent

adheres even in the absence of second-period incentives. The �dynamic approach� is to in-

spect an agent with probability lower than 1
1+c

and to reward the agent by not inspecting

him in the second period, provided he is inspected and found adhering in the �rst period.

As long as the �rst-period inspection probability is at least p∗ = 1
1+c+δ

, the agent adheres in

period 1. By Assumption 1, 2
1+c

> 1, and hence it is not feasible to deter both agents by the

�myopic approach�.

Region A: 1− c < δ < 1−c2
c
. In this case, p∗ + 1

1+c
> 1. This implies that to deter both

agents from violating in period 1, both agents have to be treated by the �dynamic approach�

(the condition 1 − c < δ guarantees that 2p∗ < 1). In such case, the minimum violation is

2δp∗: if an agent is inspected with probability lower than p∗ in period 1, then even with a

free violation in the second period, the agent is better o� violating in period 1, and the total

number of violations is larger than 2δp∗. If an agent is inspected with probability higher than

p∗ in period 1, since a successfully passed inspection in period 1 follows by a free violation48

in period 2, the total number of violation is larger than 2δp∗.

Consider the following strategy pro�le σA (see Figure 17) that yields the minimum number

of violations.

• Strategy of the principal:

� In the �rst period, the principal inspects each agent with the same probability p∗.

With probability 1− 2p∗ no agent is inspected.

� If no agent is inspected in the �rst period, then in the second period both agents

are inspected with probability 1
2
.

48Here we use the fact that the agent being treated by the �dynamic approach� has to be rewarded in
period 2, and the assumption that the public correlation device is excluded in period 2.
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Figure 17: Region A: the structure of σA.

� Otherwise, if the inspected agent is found adhering in the �rst period, then in the

second period this agent is inspected with probability 0, and the other agent is

inspected with probability 1.

� Punishment: if the inspected agent is found violating in the �rst period, this agent

is inspected with probability 1 in the second period.

• The strategies of the agents are: both agents adhere in the �rst period, and only the

agent who is inspected and found adhering in the �rst period violates in the second

period.

To verify that σA is an SE, the main step is to show that if an agent is not inspected in

period 1, he adheres in the second period. Indeed, the expected inspection probability an

agent faces if he is not inspected in period 1 is

1 · p∗

1− p∗
+ 0.5 · 1− 2p∗

1− p∗
=

1 + c+ δ

2(c+ δ)
,

and it can be veri�ed that 1+c+δ
2(c+δ)

> 1
1+c

, as desired.

Region C: δ ≥ 1+c−c2−c3
c2+c−1 . In this case, δ > 1−c2

c
, and hence p∗ + 1

1+c
< 1. Since under

Assumption 1 it is impossible to deter both violations by the �myopic approach�, the best

the principal can achieve is to treat one agent with the �myopic approach�, and the other

agent with the �dynamic approach�. Since in the �dynamic approach� a successful inspection

in period 1 leads to a free violation in period 2, to minimize the number of violations, the

principal minimizes the �rst-period inspection probability to p∗, and the minimum violation

in this case is δp∗.
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Consider the following strategy pro�le σC that yields the minimum number of violations

δp∗ (see Figure 18).

Figure 18: Region C: the structure of σC .

• Strategy of the principal:

� In the �rst period, inspect Agent 1 with probability p∗, inspect Agent 2 with

probability 1
1+c

. With the remaining probability, inspect no agent.

� If Agent 1 is found adhering in the �rst period, then in the second period inspect

Agent 1 and Agent 2 with probabilities 0 and 1, respectively.

� If Agent 2 is found adhering in the �rst period, then in the second period inspect

Agent 1 and Agent 2 with probabilities c
1+c

and 1
1+c

, respectively.

� If no agent is inspected in the �rst period, then in the second period inspect Agent

1 and Agent 2 with probabilities 1 and 0, respectively.

� Punishment: if the inspected agent is found violating in the �rst period, this agent

is inspected with probability 1 in the second period.

• The strategies of the agents:

� Both agents adhere in the �rst period.

� If Agent 1 is inspected in the �rst period, he violates in the second period.

� In all other scenarios, each agent adhere in the second period.

We next argue that σC is an SE. The key step is to show that in the second period, an

agent who is not inspected in period 1 is better o� adhering. If Agent 2 is not inspected in

period 1, the expected inspection probability he faces in the second period is

1 · p∗

1− 1
1+c

+ 0 ·
1− p∗ − 1

1+c

1− 1
1+c

=
1 + c

c(1 + c+ δ)
. (19)
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It can be veri�ed that 1+c
c(1+c+δ)

> 1
1+c

, and hence Agent 2 adheres.

If Agent 1 is not inspected in period 1, the expected inspection probability he faces in

the second period is

1 ·
1− p∗ − 1

1+c

1− p∗
+

c

1 + c
·

1
1+c

1− p∗
. (20)

It can be veri�ed that the quantity in Eq. (20) is larger than 1
1+c

if and only if δ ≥ 1+c−c2−c3
c2+c−1 .

Therefore, σC is an SE that yields a loss of δp∗ to the principal.

Region B: 1−c2
c

< δ < 1+c−c2−c3
c2+c−1 . In this case, the strategy structure σA remains an SE,

and it yields a discounted number of violations 2δp∗. We next argue that this is the optimal

outcome.

In the current case, p∗ + 1
1+c
≤ 1, and hence in the �rst period the principal can treat

one agent myopically and the other agent dynamically. Since δ < 1+c−c2−c3
c2+c−1 , when using the

inspection scheme depicted in Figure 18, the quantity in Eq. (20) is lower than 1
1+c

. That

is, if Agent 1 is not inspected in period 1, he violates in period 2. Therefore, σC is no longer

an SE.

We next argue that when treating one agent myopically and the other agent dynamically

in the �rst period, the discounted number of violations is always larger than 2δp∗. Denote

the inspection probabilities for Agent 1 and 2 in the �rst period by p1 and p2, respectively.

Suppose without loss of generality that Agent 1 is treated dynamically (hence p1 ≥ p∗), and

Agent 2 is treated myopically (hence p2 ≥ 1
1+c

). Upon a successful inspection, Agent 1 is

rewarded with a free violation, which yields the number of violation δp1 ≥ δp∗. Therefore,

the only possible scenario under which the total number of violations is less than 2δp∗ is

that except the above violation, both agents adhere. Suppose this is possible. Then the

inspection scheme must have the structure depicted in Figure 19.

Figure 19: An inspection scheme for the principal.

Here, if Agent 1 is not inspected in the �rst period, the expected inspection probability
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for him is

q1 ·
1− p1 − p2

1− p1
+

c

1 + c
· p2

1− p1
≤ 1 · 1− p1 − p2

1− p1
+

c

1 + c
· p2

1− p1
= 1− 1

1 + c
· p2

1− p1

≤ 1− 1

1 + c
·

1
1+c

1− p∗︸ ︷︷ ︸
eqiuvalent to (20)

<
1

1 + c
.

(21)

The last inequality in Eq. (21) holds because the quantity in Eq. (20) is smaller than 1
1+c

.

This implies that under the inspection scheme depicted in Figure 19, Agent 1 is better o�

violating if he is not inspected in the �rst period. The discounted number of violations is

hence δ. Therefore, when treating one agent dynamically and another agent myopically, it

is impossible to attain violations less than 2δp∗, and hence the principal prefers the SE σA.

When treating both agent dynamically, σA is optimal, as discussed in Region A. Therefore,

in the current case the optimal SE yields 2δp∗ violations.

A.14 Optimal information revelation: two-period game

In the two period game, the lower-bound loss of the principal is 1− c, see Fact 1. In this

section we show that the optimal information revelation attains this lower bound.

An important implication of this exercise is to show that the optimal information revela-

tion scheme in the two-period game is not a simple repetition of the solution to the one-shot

game, as the latter yields the principal a loss of (1+δ)(1−c). Consider the following strategy
pro�le.

• In the �rst period, the recommendations to the players are detailed in Table 2, with

x = (1−c)(1−δ)
2

.

Probability Principal Agent 1 Agent 2
x I1 A V
x I2 V A

0.5− x I1 A A
0.5− x I2 A A

Table 2: First period recommendations.

• If Agent 1 is inspected in the �rst period and found adhering, then in the second period

the principal recommends the agents to implement the payo� vector (v1 = 1−c, v2 = 0),

as described in Table 1.
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• If Agent 2 is inspected in the �rst period and found adhering, then in the second period

the principal recommends the agents to implement the payo� vector (v1 = 0, v2 = 1−c),
which is the analogue of Table 1.

• Punishment: if an agent, say agent i, is found violating in the �rst period, then in the

second period he is inspected with probability 1 and the other agent is inspected with

probability 0. agent i adheres and the other agent violates.

When the agents follow the recommended strategy, the principal loses (1 − δ)(1 − c) in

the �rst period, and δ(1−c) in the second period. The total loss of the principal is thus 1−c
and, as argued before, this is the lowest possible equilibrium loss in the two-period game.

We now verify that the proposed strategy pro�le constitutes an equilibrium of the two-

period game. We start by showing that under the proposed information revelation scheme,

both agents are better o� following the recommended actions. Since the agents are symmet-

ric, we only verify this for Agent 1.

If Agent 1 is told to violate in a certain period, then for sure he is not inspected in that

period, and hence following the recommendation is optimal. Now consider the second period

under the history A1 (resp., A2), and suppose Agent 1 is told to adhere. The expected

inspection probability for Agent 1 in this case is
c

1+c

c
1+c

+ c2

1+c

= 1
1+c

(resp., 1 − c + c2

1+c
= 1

1+c
),

and adhering is an optimal response. Finally, we turn to the �rst period. In the �rst period,

if Agent 1 is told to adhere, then he faces an inspection probability 0.5
1−x = 1

1+c+(1−c)δ <
1

1+c
.

Since f( 0.5
1−x) = 1− c, Agent 1 is better o� adhering in the �rst period.

When players follow the recommended actions, the agents' payo�s are (v1 = 1−c
2
, v2 =

1−c
2

), and the principal's loss is 1− c, which is the lower bound on her loss in a PPE/SE.

It is natural to ask whether the lower-bound payo� can be attained also in T -period

games with T > 2. We conjecture that the answer is negative. The reason is that in the

two-period game, even though the payo� vector (v1 = 1−c
2
, v2 = 1−c

2
) can be attained as an

equilibrium payo� (as shown above), the payo� vector (v1 = 1 − c, v2 = 0) cannot. This

is in contrast to the one-shot game, and prevents us from using induction to generalize the

argument for the two-period game to games with a larger number of periods.

A.15 Information design that relies on public signals only

Consider the two-period problem with one inspector and two agents, and suppose mon-

itoring is private. In this section, the principal has a commitment power and is allowed to

send public signals regarding the true history. In particular, if the principal reveals all her

69



past observations, the monitoring becomes public. The question is, whether by partially re-

vealing the history, the principal can attain an outcome superior to both private and public

monitoring.

As in Section 4.2, we assume that δ > 1− c and exclude the use of the public correlation

device. Moreover, since public histories may serve as a correlation device, to separate the

e�ect of the public signal from that of the public correlation device, in this section we require

the inspection strategy to be independent of the public signal.

The timeline is summarized as follows. The principal �rst publicly announces and com-

mits to an inspection scheme and a public disclosure rule. Agents then take their �rst-period

actions, and the principal conducts the inspection. Given the realization of players' �rst-

period actions, the principal observes a private signal y0 ∈ Y0 = {V1, A1, V2, A2, ∅}, and
sends a public signal about her observation. In the second period, agents take their actions

according to their private inspection histories and the public signal (which together form the

agents' private histories), and the principal conducts the inspection (which depends only on

y0 and not on the public signal). We study the sequential equilibrium of this game: devia-

tions of the agents are non-pro�table after every private history. Note that if the principal

reveals nothing, the monitoring is private; if the principal fully reveals her observation, the

monitoring is public.

As shown in Theorem 1, in the current setup, private monitoring is always weakly better

than public monitoring. Our question therefore boils down to whether by partially revealing

the history, the principal can attain an outcome better than the best equilibrium outcome

under private monitoring (the latter is studied in Section 4.2).

As in Appendix A.13, we will distinguish between three cases, according to whether (c, δ)

lies in Region A, B, or C in Figure 6. When (c, δ) lies in Regions A or C, the lower-bound

violations derived in Appendix A.13 remains a lower-bound in the current case (the argument

is similar to that in Appendix A.13 and hence omitted). Since private monitoring already

attains this lower-bound (as shown in Appendix A.13), partial revelation of the history

cannot further bene�t the principal.

Consider next Region B in Figure 6. By Proposition 2, the minimum violation under

private monitoring in this case is 2δp∗. We next show by an example that by using public

signals, the principal can attain a better outcome.

Consider the inspection scheme depicted in Figure 20. First, as a benchmark, suppose

the principal does not reveal any history (that is, the monitoring is private). Agents' best

responses are given in Figure 20.49 Indeed, under private monitoring, if Agent 1 is not

49Note the di�erence between agents' actions in Figure 18 and Figure 20. In the former (parameters in
Region C), if Agent 1 is not inspected in period 1, he adheres in period 2. Whereas in the latter (parameters
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inspected in period 1, then the expected inspection probability he faces in period 2 is

1 ·
1− p∗ − 1

1+c

1− p∗
+

c

1 + c
·

1
1+c

1− p∗
. (22)

This quantity is lower than 1
1+c

for parameters in the current case (Region B), and hence

Agent 1 violates.

Figure 20: An equilibrium under Region B.

We next show that by partially sending public signals, the principal can reduce the num-

ber of violations to a quantity lower than 2δp∗ (that is, the minimum equilibrium violation

under private monitoring). Consider the following public signal: if the true history in period

1 is I2, then with probability x the principal publicly announces I2. Otherwise, the principal

remains silence. If the principal announces I2, then Agent 1 knows that he faces inspection

probability c
1+c

in the second period, and he violates. If Agent 1 is not inspected in period

1 and the principal remains silence, then the inspection probability Agent 1 faces in period

2 is

1 ·
1− p∗ − 1

1+c

1− p∗ − x
1+c

+
c

1 + c
·

1
1+c
· (1− x)

1− p∗ − x
1+c

. (23)

Compared with (22), expression (23) assigns a larger weight to inspection probability

1, and its value increases in x. Let x∗ := 1+δ+(1−δ)c−(1+δ)c2−c3
(1−c)(1+c+δ) . It can be veri�ed that

when x ≥ x∗, (23) is (weakly) larger than 1
1+c

, and Agent 1 adheres in period 2 if he was not

inspected in period 1 and the principal does not announce I2. The total number of violations

in this case is δ(p∗ + x
1+c

).

Take, for instance, (c = 0.85, δ = 0.7). It can be veri�ed that this pair of parameter lies

in Region B, and x∗ = 0.29. By setting x = x∗, the total number of violations is δ(p∗ +

in Region B), if Agent 1 is not inspected in period 1, he violates in period 2.
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x∗

1+c
) = 0.39. This quantity is lower than the minimum violation under private monitoring

2δp∗ = 0.55. Thus, a partial revelation of public signal improves the principal's payo�.
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B Appendix B. Proofs for T -period games.

B.1 Proof of Theorem 7 and Proposition 3

In This section we provide the detailed analysis for the T -period game. Throughout

this section we assume that there are two agents and one inspector, and δ > 1−c2
c
. Denote

by Gpub
T (resp. Gpri

T ) the T -period public monitoring game (resp. private monitoring game).

Solan and Zhao (2021) studied the in�nitely repeated game with public monitoring, and here

we adapt their analysis to Gpub
T .

Preliminaries. Analogously to Section 2.5, without loss of generality we can restrict

attention to equilibria that satisfy the following conditions:

(i) Whenever an agent is indi�erent between adhering and violating, he adheres.

(ii) On the equilibrium path, whenever an agent violates, he is inspected with probability

zero.

(iii) On the equilibrium path, an agent who is inspected and found violating is punished in

the most severe way: he is inspected with probability 1 in all future periods.

The proof of this claim follows from results in Solan and Zhao (2021).

Denote by E∗(G
pub
T ) the set of all PPEs that satisfy conditions (i)�(iii) in the T -period

game. Under every PPE σ = (σ0, σ1, σ2) in E∗(G
pub
T ), an agent violates if and only if he

is inspected with probability 0, hence in the subgame following the announcement of σ0,

the agents' best response strategies in E∗(G
pub
T ) are uniquely determined. In the rest of the

section we focus only on PPEs in E∗(G
pub
T ). A result similar to Proposition 1 follows: An

agent who is inspected with probability p adheres if and only if his continuation payo� upon

being inspected and found adhering is at least f(p).

Proposition 4. Suppose that σ is a PPE in E∗(G
pub
T ). Then for every history hk that occurs

with positive probability, agent i adheres if and only if vi(σ|(h1,Ai)) ≥ f
(
σ0(Ii|h1)

)
.

We are now ready to prove Theorem 7 and Proposition 3. For every T ≥ 1, let γT be the

minimum equilibrium payo� for Agent 1 in the T -period game, given that Agent 2 obtains

zero.50

The rest of this appendix is structured as follows. Let T ≥ 2. In Section B.1.1 we show

that if γT−1 ≤ 1−c
δ
, then in the T -period game public monitoring can attain the lower-bound

loss 1 − c, and Private ≈ Public. In Section B.1.3 we show that if γT−1 >
1−c
δ
, then in the

50This value is the same regardless of the monitoring structure: Since Agent 2 obtains 0, he is necessarily
inspected with probability 1

1+c in each period, regardless of the history. Therefore, the inspection intensity
for Agent 1 depends only on his own inspection history, which is known to him. It follows that revealing
past inspection results has no advantage in this case.
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T -period game public monitoring cannot attain the lower bound 1−c, and Private � Public.

Theorem 7 follows immediately from these two results.

In Section B.1.2 we provide the detailed characterization of γT and shows that the se-

quence {γT}T≥1 is decreasing in T and converges to (1−c)(1+c)
1+c−δ . Therefore, the set of pa-

rameters (c, δ) under which γT−1 > 1−c
δ

is smaller as T increases. Moreover, as long as
(1−c)(1+c)

1+c−δ > 1−c
δ

(which is equivalent to δ > 1+c
2+c

), for any T ≥ 2 we have γT−1 >
1−c
δ

and

Private � Public. Proposition 3 follows.

B.1.1 The case γT−1 ≤ 1−c
δ
.

We will prove that in this case, in the T -period game the principal can attain the lower-

bound loss 1 − c already under public monitoring. To this end, we �rst present a technical

result. For every T ≥ 2, let ∆T := 1 + δ + δ2 + · · · + δT−1. For every T ≥ 1 and every

x ∈ [0,∆T ], let gpubT (x) be the minimum payo� of Agent 1, where the minimum is taken over

all PPEs in E∗(G
pub
T ) that yield Agent 2 the payo� x. Note that gpubT (0) = γT .

Proposition 5. Suppose that in the T -period game, under public monitoring the payo�

vector (v1 = x, v2 = y) is a PPE outcome in E∗(G
pub
T ). Then for every y′ ∈ [y,∆T ], the

payo� vector (v1 = x, v2 = y′) can be implemented as a PPE outcome in E∗(G
pub
T ).

Proof. If y = ∆T , the result holds trivially. If y < ∆T , then there exist histories on the

equilibrium path of σ under which Agent 2 adheres. To increase Agent 2's payo�, we choose

a set of histories in which Agent 2 adheres, and we change the play at these histories: Agent

2 will not be inspected and will violate. This way we construct an equilibrium that yields

Agent 2 a payo� higher than gpubT (x) without a�ecting the payo� of Agent 1. To make the

increment exactly equal to y′ − y, we may need the use of the correlation device.

Now consider the following PPE σ in Gpub
T .

• In the �rst period inspect each agent with probability 1
2
. Both agents adhere.

• If Agent 1 (resp., Agent 2) is inspected in the �rst period and found adhering, from

the second period on the players implement a strategy pro�le that yields the payo�s(
f(1

2
), 0
)
(resp.,

(
0, f(1

2
)
)
).

• Punishment: If in the �rst period an agent is found violating, then in all future periods

he is inspected with probability 1, he adheres, and the other agent violates.

The assumption γT−1 ≤ 1−c
δ

= f(1
2
) together with Proposition 5 imply that the payo�

vectors
(
f(1

2
), 0
)
and

(
0, f(1

2
)
)
can be achieved as PPE outcomes in Gpub

T−1. It can be veri�ed
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that σ is a PPE that yields both agents the expected payo� 1
2
·δf(1

2
). The sum of the agents'

payo�s is δf(1
2
) = 1− c, as desired.

B.1.2 Recursive formula for γT .

We here present a recursive formula for the sequence {γT}T≥1.

Proposition 6. Suppose there are one inspector and two agents. If δ > 1−c2
c
, then γ1 = 1,

and for every T ≥ 2,

γT =

{
δ · γT−1, if γT−1 ≥ f( c

1+c
),

δ ·
(

1
1+c
· γT−1 + c

1+c
· f( c

1+c
)
)
, if γT−1 < f( c

1+c
).

(24)

In particular, the sequence {γT}T≥1 is decreasing in T and converges to (1−c)(1+c)
1+c−δ .

Proof. Step 1: For every T ≥ 1, to implement
(
v1 = γT , v2 = 0

)
in Gpub

T , no correlation

device has to be used in the �rst period.

Let σ ∈ E∗(G
pub
T ) be a PPE with corresponding payo� (v1 = γT , v2 = 0), and suppose

that σ uses the correlation device in the �rst period. Let (V1, V2) be the random variable

that represents the expected outcome given the realization of the correlation device. Then

(V1, V2) is a PPE outcome in Gpub
T almost surely (a.s.). Next, since Agent 2 can guarantee

the payo� 0 by always adhering, V2 ≥ 0 a.s. Since the expectation of V2 is v2 = 0, we have

V2 = 0 a.s. Since γT is the lowest PPE outcome for Agent 1, when Agent 2's payo� is zero,

we deduce that V1 ≥ γT a.s. Since the expectation of V1 is v1 = γT , we have v1 = γT a.s. In

particular, no correlation device is needed in the �rst period.

Let γ̂T be the minimum payo� that Agent 1 gets over all PPEs in E∗(G
pub
T ) that yield

Agent 2 the payo� 0, provided that Agent 1 adheres in the �rst period. Naturally, γT ≤ γ̂T .

Step 2: For every T ≥ 2, {γ̂T}T≥2 satis�es the following equation:

γ̂T =

{
δ · γT−1, if γT−1 ≥ f( c

1+c
),

δ ·
(

1
1+c
· γT−1 + c

1+c
· f( c

1+c
)
)
, if γT−1 < f( c

1+c
).

(25)

To guarantee that Agent 2 obtains the payo� 0, Agent 2 has to be inspected with proba-

bility at least 1
1+c

in all periods, and in particular in the �rst period. Denote the inspection

probabilities for Agent 1 and Agent 2 in the �rst period by p1 and p2, respectively. Without

loss of generality51 we can assume that p1 + p2 = 1.

51We can always increase the inspection probability for Agent 2 to satisfy this condition.
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The continuation payo� of Agent 1 satis�es the following conditions: (i) To ensure that

Agent 2's continuation payo� is 0, Agent 1's continuation payo� is at least γT−1. (ii) Since

Agent 1 adheres in the �rst period, by Proposition 6 this implies that Agent 1's continuation

payo� when he is inspected is at least f(p1). Consequently,

γ̂T ≥ min
p1,p2

(
δ ·
(
p2 · γT−1 + p1 ·max{f(p1), γT−1}

))
, (26)

where the minimum is taken over all (p1, p2) such that p2 ≥ 1
1+c

and p1 + p2 = 1. Since the

function p 7→ pf(p) is decreasing, the minimum on the right-hand-side of (26) is attained

when p1 = c
1+c

and p2 = 1
1+c

.

We next claim that the minimum is attained as a PPE, so that equality holds in Eq. (26),

which implies Eq. (25). Consider the following PPE: Agent 2 is inspected with probability
1

1+c
in all periods and consequently he always adheres and obtains a payo� 0. Now we turn

to Agent 1. In the �rst period Agent 1 is inspected with probability c
1+c

. If Agent 1 is not

inspected in the �rst period, he obtains a continuation payo� of γT−1. If Agent 1 is inspected

in the �rst period, he obtains a continuation payo� max{f(p1), γT−1} (by Proposition 5, this

payo� can be implemented as a PPE outcome). This strategy constitutes a PPE that yields

Agent 1 an expected payo� as shown in the right-hand side of Eq. (26).

Step 3: γT = γ̂T for all T .

As argued before, since δ > 1−c2
c

(or equivalently f( c
1+c

) < 1), in the two-period game

γ2 = δ < 1. By Eq. (25) and since γT ≤ γ̂T , we have γ̂T < 1 for every T ≥ 3. Since we

only consider PPEs in E∗(G
pub
T ) and since by Step 1 no correlation device is used in the �rst

period, in the �rst period Agent 1 either obtains 0 (if he adheres) or 1 (if he violates). If

under σ Agent 1 violates in the �rst period, he in�icts a loss of 1 on the principal, which

is worse than the loss of γT . Consequently, for T ≥ 3, γT agrees with γ̂T and satis�es the

recursive formula shown in Eq. (24).

Step 4: The sequence {γT}T≥1 is decreasing in T and converges to (1−c)(1+c)
1+c−δ .

By Eq. (24), γT = δγT−1 as long as γT−1 ≥ f( c
1+c

). Let T ∗ be the smallest integer that

satis�es γT ∗ ≥ f( c
1+c

) and γT ∗+1 < f( c
1+c

) < 1. Since γ1 = 1 > f( c
1+c

), such an integer exists

and it is at least 1. By Eq. (24), γT ∗+1 = δ · γT ∗ < γT ∗ . We now verify that γT ∗+2 < γT ∗+1.

76



Indeed,

γT ∗+2 = δ ·
(

c

1 + c
· f(

c

1 + c
) +

1

1 + c
· γT ∗+1

)
< δ ·

(
c

1 + c
· γT ∗ +

1

1 + c
· γT ∗

)
= γT ∗+1.

(27)

It now follows by induction that for every T > T ∗, we have γT+2 < γT+1 < 1. The sequence

(γT )T≥1 is decreasing and bounded below by 0, hence converges to a limit, denoted L. This

limit is a solution to L = δ ·
(

c
1+c
· f( c

1+c
) + 1

1+c
· L
)
, which solves to L = (1−c)(1+c)

1+c−δ .

B.1.3 Case γT−1 >
1−c
δ
.

We now deal with the case γT−1 >
1−c
δ
. We �rst study the structure of the optimal PPE

under public monitoring. We then show that the optimal PPE can be improved by an SE

under private monitoring.

We �rst present a few technical results that are useful for the construction of the optimal

PPE under public monitoring.

Proposition 7. Let T ≥ 2 and x ∈ [0, γT ]. There is a PPE in E∗(G
pub
T ) that implements

the payo�
(
v1 = x, v2 = gpubT (x)

)
under which in the �rst period no correlation device is used

and both agents adhere.

Proof. See Appendix B.3.

Proposition 8. Fix T ≥ 2. There is an optimal inspection strategy in the game Gpub
T under

which the principal assigns probability zero to no inspection in those periods where at least

one agent adheres. That is, σ0(∅|ht) = 0 for every history ht that satis�es σ1(A|ht) = 1 or

σ2(A|ht) = 1.

This result asserts that except those stages where both agents violate (in which case both

agents are inspected with probability 0), in all other stages the principal cannot bene�t from

assigning a positive probability to being idle. Intuitively, if under a PPE σ in E∗(G
pub
T ), after

a given history an agent, say, Agent 1, adheres and the probability that the inspector remains

idle is positive, then by changing the inspector's strategy to inspect Agent 1 whenever she

is supposed to be idle, we do not alter the incentives of the agents and this new PPE yields

the agents the same payo� as σ.

Throughout the proof we focus on PPEs that satisfy propositions 7 and 8. Recall that

gpubT (x) is the minimum payo� of Agent 1, where the minimum is taken over all PPEs in

E∗(G
pub
T ) that yield Agent 2 the payo� x.
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Proposition 9. The function gpubT (x) : [0,∆T ] → [0,∆T ] is well de�ned. Moreover, (i) the

function gpubT is non-negative and non-increasing, and strictly decreasing on [0, γT ]; (ii) the

function gpubT is convex; (iii) gpubT (γT ) = 0; (iv) the function gpubT is continuous on [0, γT ];

(v) for every x ∈ (0, γT ), we have gpubT

(
gpubT (x)

)
= x.

Proposition 9 is analogous to Proposition 8 in Solan and Zhao (2018), and its proof is

omitted. See Figure 21 for an illustration of the function gpubT .

Figure 21: An illustration of the function gpubT .

Proposition 10. Suppose γT−1 > 1−c
δ
. For every x ∈ (0, γT ), there exists a PPE σ̂ ∈

E∗(G
pub
T ) that implements the payo� vector

(
v1 = x, v2 = gpubT (x)

)
with the following structure

(see Figure 23): the continuation payo� from the second period and on is
(
W, gpubT−1(W )

)
(resp.,

(
gpubT−1(Z), Z

)
) if Agent 1 (resp., Agent 2) is inspected in the �rst period. Moreover,

W ∈ (0, γT−1) or Z ∈ (0, γT−1).

Proposition 10 asserts that, to implement the payo� vector
(
x, gpubT (x)

)
, regardless of

which agent is inspected in the current period, the continuation payo� vector lies on the

boundary of the PPE payo� set of Gpub
T−1. That is, the continuation payo� of the agent who

is not inspected is set to be as low as possible.

Proof. Consider the game Gpub
T . Suppose that the strategy pro�le σ̂ ∈ E∗(G

pub
T ) implements

the payo�s
(
v1 = x, v2 = gpubT (x)

)
, where x ∈ (0, γT ). By Proposition 7, we can assume

that in the �rst period of σ̂ the correlation device is not used and both agents adhere. Since

x ∈ (0, γT ), the monotonicity of gpubT implies that gpubT (x) ∈ (0, γT ). The �rst period under σ̂

is shown in Figure 22, where p1 := σ̂0(I1), W := v1(σ̂|I1), X := v2(σ̂|I1), Y := v1(σ̂|I2), and
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Z := v2(σ̂|I2). Since we focus on PPEs that satisfy Proposition 7, both agents adhere in the

�rst period and hence W ≥ f(p1) and Z ≥ f(1− p1).

Figure 22: The �rst period under σ̂. Figure 23: The �rst period under σ̂ (updated).

To make both agents' expected discounted payo� agree with their continuation payo�s,

it is necessary that

x = 0 + δ ·
(
p1 ·W + (1− p1) · Y ), gpubT (x) = 0 + δ ·

(
p1 ·X + (1− p1) · Z

)
. (28)

We argue that X = gpubT−1(W ). Indeed, since we study the game with public monitoring,

the continuation play is a PPE, hence X ≥ gpubT−1(W ). Moreover, to minimize Agent 2's

payo� at the outset of the game, one needs to lower Agent 2's continuation payo�, hence

X = gpubT−1(W ). Since x = gpubT

(
gpubT (x)

)
(see Proposition 9(v)), given that Agent 2 obtains

a payo� gpubT (x), the value x is the minimal equilibrium payo� for Agent 1. Therefore, a

similar argument applies and Y = gpubT−1(Z). We summarize the updated continuation payo�s

in Figure 23.

We now show that without loss of generality we can assume that W ∈ (0, γT−1) or

Z ∈ (0, γT−1). To this end, we rule out all cases where W /∈ (0, γT−1) and Z /∈ (0, γT−1).

Case 1: W = 0 and Z ≥ γT−1. In this case gpubT−1(Z) = 0 and hence x = δ ·
(
p1 ·W + (1−

p1) · gpubT−1(Z)
)

= 0, a contradiction to x ∈ (0, γT ).

Case 2: W ≥ γT−1 and Z = 0. In this case gpubT−1(W ) = 0 and hence gpubT (x) = δ ·
(
p1 ·

gpubT−1(W ) + (1− p1) · Z
)

= 0. This implies that x ≥ γT , a contradiction to x ∈ (0, γT ).

Case 3: W = 0 and Z = 0. Since both agents adhere in the �rst period, W ≥ f(p1) and

Z ≥ f(1 − p1). This implies that p1 ≥ 1
1+c

and 1 − p1 ≥ 1
1+c

, which, due to Assumption 1,

is impossible to attain.

Case 4: W ≥ γT−1 and Z ≥ γT−1. This is the most challenging case. We will show that

there exists another strategy pro�le σ′ in the game Gpub
T with the structure shown in Figure

23 that also implements the payo�s
(
v1 = x, v2 = gpubT (x)

)
, with either W ′ := v1(σ

′|I1) ∈
(0, γT−1) or Z

′ := v2(σ
′|I2) ∈ (0, γT−1).
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Since max(p1, 1− p1) ≥ 1
2
and γT−1 >

1−c
δ

= f(1
2
) (by the assumption of Proposition 10),

we have

W,Z ≥ γT−1 > f(
1

2
) ≥ f

(
max{p1, 1− p1}

)
= min{f(p1), f(1− p1)}. (29)

This observation, together with the inequalities W ≥ f(p1) and Z ≥ f(1 − p1), imply that

either W > f(p1), or Z > f(1− p1). Suppose without loss of generality that Z > f(1− p1).
Set p′2 := f−1(Z). Since Z > f(1− p1), we have p′2 < 1− p1. Consider the following strategy
pro�le σ′ in the game Gpub

T (see Figure 24).

• In the �rst period, the principal inspects Agent 1 with probability 1 − p′2, and Agent

2 with probability p′2. Both agents adhere.

• LetW ′ := p1
1−p′2
·W +

1−p1−p′2
1−p′2

·gpubT−1(Z) > 0. If Agent 1 is inspected and found adhering,

from the second period on the players implement a strategy pro�le that yields the

payo�s
(
W ′, gpubT−1(W

′)
)
.

• If Agent 2 is inspected and found adhering, from the second period on the players

implement a strategy pro�le that yields the payo�s
(
v1 = gpubT−1(Z), v2 = Z

)
.

• Punishment: If in the �rst period an agent is found violating, then in all future periods

that agent is inspected with probability 1, he adheres, and the other agent violates.

Figure 24: The �rst period under σ′.

Since W ′(1− p′2) = p1W + (1− p1 − p′2)g
pub
T−1(Z) ≥ p1f(p1) > (1− p′2)f(1− p′2), we have

Z = f(p′2) and W
′ ≥ f(1− p′2), and hence the strategy pro�le σ′ is a PPE in E∗(G

pub
T ). By

the convexity of gpubT−1, and since gpubT−1
(
gpubT−1(Z)

)
= Z,

gpubT−1(W
′) ≤ p1

1− p′2
· gpubT−1(W ) +

1− p1 − p′2
1− p′2

· Z. (30)

In fact, Eq. (30) holds with equality, since otherwise the strategy pro�le σ′ constitutes a PPE

in Gpub
T that yields the outcome (v1 = x, v2 = y), where y < gpubT (x), a contradiction to the
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de�nition of gpubT . Consequently, σ′ also yields the agents the payo�s
(
v1 = x, v2 = gpubT (x)

)
.

As can be seen in Figure 23, since gpubT (x) > 0, the right-hand side of Eq. (30) is positive,

and hence gpubT−1(W
′) > 0. This observation, together withW ′ > 0 imply thatW ′ ∈ (0, γT−1),

as desired.

We are now ready to compare public and private monitoring. To this end, it is convenient

to restrict attention to a family of SEs in Gpri
T , which is analogous to the family E∗(G

pub
T ).

Speci�cally, let E∗(G
pri
T ) be the set of SEs under which (i) the agents play pure strategies,

and whenever an agent is indi�erent between adhering and violating, he adheres; (ii) the

loss of the principal equals the sum of payo�s of the agents; and (iii) on the equilibrium

path, an agent who is inspected and found violating will be punished by being inspected

with probability 1 in all future periods. For every x, let gpriT (x) be the minimal payo� of

Agent 1 among all SEs in E∗(G
pri
T ) in which Agent 2's payo� is x. Since we allow the use of

the randomization device, the function gpriT is convex.

Remark 5. While in the game with public monitoring Gpub
T the restriction to E∗(G

pub
T ) is

without loss of generality, this may not be the case in the game Gpri
T with private monitoring.

However, as we will see, restricting attention to E∗(G
pri
T ) is su�cient for determining the

relationship between the two monitoring structures.

The next proposition is analogous to Proposition 1, and states that the reward an agent

should receive for adhering (if his behavior is observed by the principal) is given by the

function f .

Proposition 11. Suppose that σ is an SE in E∗(G
pri
T ). Then for every private history

hki , i = 1, 2, that occurs with positive probability under σ, σi(A|hki ) = 1 if and only if

vi(σ|(hki ,Ai))− vi(σ|(hki ,Vi)) ≥ f
(
E[σ0(Ii|hki )]

)
, where E[σ0(Ii|hki )] is the probability assigned by

agent i after the private history hki to the event that he is inspected.

To show the superiority of private monitoring, we divide the argument into several steps.

We �rst show that if γT−1 > 1−c
δ

and gpriT−1(x) < gpubT−1(x) for every x ∈ (0, γT−1), then

gpriT (x) < gpubT (x) for every x ∈ (0, γT ) (Step 1). We next show that gpri2 (x) < gpub2 (x) for

every x ∈ (0, γ2) (Step 2). By induction, we show that if γT−1 >
1−c
δ
, then gpriT (x) < gpubT (x)

for every x ∈ (0, γT ) (Step 3). Since the principal minimizes the sum of the agents' gain (that

is, x+ gpubT (x) under public monitoring and x+ gpriT (x) under private monitoring), the above

result implies that private monitoring is better for the principal than public monitoring in

the T -period game.
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Step 1: If γT−1 >
1−c
δ

and gpriT−1(x) < gpubT−1(x) for every x ∈ (0, γT−1), then gpriT (x) <

gpubT (x) for every x ∈ (0, γT ).

Fix x ∈ (0, γT−1), and let σ̂ = (σ̂0, σ̂1, σ̂2) be a PPE in Gpub
T that implements the payo�(

v1 = x, v2 = gpubT (x)
)
and has the structure shown in Figure 23 with W ∈ (0, γT−1) or

Z ∈ (0, γT−1). Denote by p1 the probability under σ̂0 that the inspector inspects Agent 1 in

the �rst period.

Suppose �rst that W ∈ (0, γT−1). By the assumption in this step, gpriT−1(W ) < gpubT−1(W ).

We argue that in the game Gpri
T the principal can achieve an SE outcome (v1 = x, v2 = y)

for some y < gpubT (x). This will prove that when W ∈ (0, γT−1) we have g
pri
T (x) < gpubT (x).

Let (σW , µW ), where σW = (σW0 , σ
W
1 , σ

W
2 ), be the SE in Gpri

T−1 that implements the payo�

vector
(
v1 = W, v2 = gpriT−1(W )

)
, and let (σZ , µZ), where σZ = (σZ0 , σ

Z
1 , σ

Z
2 ), be the SE in

Gpri
T−1 that implements the payo� vector

(
v1 = gpubT−1(Z), v2 = Z

)
. Consider the following

strategy pro�le σpri = (σpri
0 , σpri

1 , σpri
2 ) in Gpri

T (see Figure 25):

Figure 25: The �rst period under σpri.

• Strategy of the principal:

� In the �rst period, inspect Agent 1 and Agent 2 with probabilities p1 and 1− p1,
respectively.

� If Agent 1 (resp., Agent 2) is inspected in the �rst period and found adhering,

then from the second period on the inspector follows σW0 (resp., σZ0 ).

� Punishment: if an agent is found violating, he is inspected with probability 1 in

all future periods.

• Strategy of each agent i:

� agent i adheres in the �rst period.

� If agent i is inspected in the �rst period and found adhering, then from the second

period on he implements σW1 (if i = 1) or σZ2 (if i = 2), ignoring the play in the

�rst period.
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� If agent i is not inspected in the �rst period, then from the second period on he

implements σZ1 (if i = 1) or σW2 (if i = 2), ignoring the play in the �rst period.

� Punishment: if in the �rst period agent i is inspected and found violating, he

adheres in all future periods.

We next specify a proper belief system for σpri. Since (σW , µW ) is an SE, there exists a

sequence of strategies where agents completely mix their actions {σW,k}k∈N that converges to

σW , with a corresponding sequence of beliefs {µW,k}k∈N that converges to µW . An analogous

statement applies to (σZ , µZ). For every k ∈ N, consider those plays that occur with positive

probability52 under σW,k and σZ,k, and denote by εk > 0 the minimum among all these

probabilities. Since agents play pure strategies in σW and σZ , the sequence εk converges to

zero as k →∞.

• Consider the following strategy pro�le σpri,ki of agent i that is completely mixed:

� In the �rst period agent i adheres with probability 1 − (εk)
2 and violates with

probability (εk)
2.

� If agent i is inspected in the �rst period and found adhering, then from the second

period on he implements σW,k1 (if i = 1) or σZ,k2 (if i = 2).

� If agent i is not inspected in the �rst period, then from the second period on he

implements σZ,k1 (if i = 1) or σW,k2 (if i = 2).

� Punishment: if in the �rst period agent i is inspected and found violating, he

adheres with probability k−1
k

in all future periods.

By de�nition, limk→∞ σ
pri,k
i = σpri

i . The reader can verify that the sequence of beliefs

(µpri,k)k∈N induced by (σpri,k)k∈N converges. Denote by µpri the limit belief system. In

Appendix B.2 we show that under µpri, if Agent 1 (resp., Agent 2) is inspected in the �rst

period, then the agents' continuation beliefs under µpri coincide with µW (resp., µZ). The

di�culty lies in showing that if an agent, say, Agent 1, is not inspected in the �rst period,

then his continuation belief under µpri coincides with µZ .

We now argue that (σpri, µpri) is an SE. When players follow σpri, even though the agent

who is not inspected in the �rst period cannot observe the �rst-period actions of the inspector

and of the other agent, he forms a correct conjecture about it: that is, the other agent is

inspected and found adhering. Therefore, if Agent 1 (resp., Agent 2) is inspected in the �rst

52The agents' strategies under σW,k and σZ,k are completely mixed. Nevertheless, the principal may use
pure actions at some histories. Therefore, under σW,k and σZ,k, there may still exist events of probability
zero.
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period, both agents believe that they are following the continuation strategy σW (resp., σZ).

Since (σW , µW ) and (σZ , µW ) are SEs from the second period and on, it is su�cient to verify

that both agents are better o� adhering in the �rst period. Indeed, since σ̂ is a PPE that

satis�es Proposition 7, we haveW ≥ f(p1) and Z ≥ f(1−p1), and hence both agents adhere

in the �rst period of σpri.

By the de�nition of σpri, we have (see Figure 25)

v1(σ
pri) = δ ·

(
p1 ·W + (1− p1) · gpubT−1(Z)

)
= v1(σ̂) = x.

Since by assumption gpriT−1(W ) < gpubT−1(W ),

v2(σ
pri) = δ ·

(
p1 ·gpriT−1(W )+(1−p1) ·Z

)
< δ ·

(
p1 ·gpubT−1(W )+(1−p1) ·Z

)
= v2(σ̂) = gpubT (x).

Thus, (σpri, µpri) is an SE in Gpri
T that yields the payo�s

(
v1 = x, v2 < gpubT (x)

)
, as desired.

This completes the proof for the case W ∈ (0, γT−1).

To prove the case Z ∈ (0, γT−1), we �rst argue that under private monitoring, gpriT is

strictly decreasing on (0, gpriT (0)). Since there is no violation-free mechanism, gpriT (0) > 0. By

the de�nition of gpriT , we have gpriT

(
gpriT (0)

)
= 0. Due to the convexity and non-negativity of

gpriT , the function gpriT is strictly decreasing on [0, γpriT ]. Note that by Theorem 1, gpriT (γT ) ≤
gpubT (γT ) = 0, and hence 0 < gpriT (0) ≤ γT .

Suppose that W is not in (0, γT−1) and Z ∈ (0, γT−1). By an argument symmetric to the

previous case, under Gpri
T the principal can attain an SE outcome (v1 = x′, v2 = gpubT (x)),

where x′ < x = v1(σ̂) (see Figure 23). Since Z ∈ (0, γT−1) and p1 ∈ (0, 1) (recall that both

agents adhere in the �rst period under σ̂), we have gpubT (x) > 0 and x > 0. If x′ < gpriT (0),

then since the function gpriT is strictly decreasing, the payo� vector (v1 = x, v2 = y) for some

y < gpubT (x) can be supported as an SE outcome in Gpri
T , as desired.

Consider now the case x′ ≥ gpriT (0). Since gpriT is non-increasing, gpriT (x′) ≤ gpriT

(
gpriT (0)

)
=

0. Since gpriT is non-negative, gpriT (x′) = 0. Since x > x′, we have gpriT (x) = 0. This implies

that the payo� vector (v1 = x, v2 = 0) can be supported as an SE outcome in Gpri
T . Since

0 < gpubT (x), private monitoring improves upon public monitoring, as claimed.

Step 2: If δ > 1− c, then gpri2 (x) < gpub2 (x) for every x ∈ (0, γ2).

As argued before, γ2 = δ and hence the payo� vectors (v1 = 0, v2 = δ) and (v1 = δ, v2 = 0)

can be supported as PPE outcomes in Gpub
2 . We now argue that gpub2 (x) = δ−x. First notice

that the payo� vectors that can be attained by a linear combination of (v1 = 0, v2 = δ) and

(v1 = δ, v2 = 0) are PPE outcomes of Gpub
2 . It is left to show that no PPE outcome
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in E∗(G
pub
2 ) can yield the agents a payo� (v1, v2) such that v1 + v2 < δ. Indeed, in the

second period there must be an agent who is inspected with probability less than 1
1+c

, and

consequently this agent violates. Since we consider PPEs in E∗(G
pub
2 ), the violating agent

gains 1 in the second period, and hence v1 + v2 ≥ δ, as desired.

Recall that γ2 = δ applies also to private monitoring. Hence the payo� vectors (v1 =

0, v2 = δ) and (v1 = δ, v2 = 0) can also be supported as PPE outcomes in Gpri
2 . Since gpri2 is a

convex function, to show that gpri2 (x) < gpub2 (x) for every x ∈ (0, γ2), it is therefore su�cient

to show that there exists an SE outcome (v̂1, v̂2) in E∗(G
pri
2 ) such that v̂1 + v̂2 < δ. Such an

SE was constructed in the proof of Theorem 1.

Step 3: For every T ≥ 3, if γT−1 >
1−c
δ
, then gpriT (x) < gpubT (x) for every x ∈ (0, γT ).

The proof is by induction on T . As shown in Step 2, gpri2 (x) < gpub2 (x) for every x ∈ (0, γ2).

By the assumption in Proposition 3, δ > 1−c2
c
. This implies that γ1 = 1 > 1−c

δ
. Since the

sequence {γk}T−1k=1 is decreasing in k and since γT−1 >
1−c
δ

by assumption, we have γk >
1−c
δ

for every k ≤ T − 1. Using Step 1, it follows by induction that gprik (x) < gpubk (x) for every

3 ≤ k ≤ T .

B.2 The consistency of beliefs

In Figure 25 in the proof of Proposition 3, we construct a sequence of strategies and belief

systems (σpri,k, µpri,k)k∈N. As k → ∞, the limit strategy and belief system (σpri, µpri) exists

and the two components are consistent with each other. In this section we show that under

µpri, if Agent 1 (resp., Agent 2) is inspected in the �rst period, the agents' continuation

beliefs under µpri coincide with µW (resp., µZ).

Let h be a private history of, say, Agent 1. In this section we show that µpri(A1, h) =

µW (h), and µpri(N1, h) = µZ(h), where A1 represents the history that Agent 1 is inspected

and found adhering, and N1 represents the history that Agent 1 is not inspected. The

argument for Agent 2's beliefs is similar.

Fix k ∈ N and consider the strategy pro�le σpri,k. Suppose that Agent 1 is inspected and

found adhering in the �rst period. In this case, from the second period on Agent 1 implements

the strategy σW,k1 , and he assigns probability 1 to the event that Agent 2 implements σW,k2 .

Agent 1's belief from the second period under µpri,k induced by σpri,k is hence the same as

the belief µW,k induced by σW,k, and therefore the limit belief when k → ∞ is the same as

well: µpri(A1, h) = µW (h).

We next consider the case where Agent 1 is not inspected in the �rst period. Denote

by I the information set of Agent 1 that contains the private history h, and suppose that
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it can be reached with positive probability under σZ,k. Note that, in fact, for all k ∈ N,
the information sets that can be reached with positive probability under σZ,k are the same.

Under (σpri,k, µpri,k), if Agent 1 is not inspected in the �rst period, the probability he assigns

to a play a ∈ I is

Pσpri,k
(
(N1, a)|(N1, I)

)
=

P (A2) · PσZ,k(a) + P (V2) · Pσpun,k(a)

P (A2) ·
∑

a′∈I PσZ,k(a) + P (V2) ·
∑

a′∈I Pσpun,k(a)
, (31)

where P (A2) = 1 − (εk)
2 (resp., P (V2) = (εk)

2) is the probability that Agent 2 is inspected

and found adhering (resp., violating), PσZ,k(a) is the probability that play a occurs under

strategy pro�le σZ,k, and σpun,k(a) is the probability that play a occurs when Agent 2 is

being inspected with probability 1 in all periods (pun stands for punishment).

As a comparison, under σZ,k, given that Agent 1 is at information set I, the probability
he assigns to play a is

PσZ,k(a, I) =
PσZ,k(a)∑
a′∈I PσZ,k(a)

. (32)

As argued before, εk → 0 as k → ∞. Therefore, in the right-hand-side of Eq. (31),

the term P (V2) goes to zero as k → ∞. Nevertheless, this is not enough to show that

(31) converges to (32), since the term PσZ,k may also go to zero. However, recall that the

magnitude of PσZ,k(a) is at least εk, whereas we choose P (V2) to be (εk)
2. Consequently, the

right-hand side of Eq. (31) converges to the right-hand side of Eq. (32), and hence in the

limit, µpri(N1, h) = µZ(h), as desired.

Note that in this proof we only deal with information sets that can be reached with

positive probability under µW,k or µZ,k. For events in the information sets that occur with

probability zero under, say, µW,k (this happens because the principal may use pure strategies

under some histories), the agents' beliefs at these events under µW are irrelevant and hence

can be selected arbitrarily. In particular, they can be made consistent with the beliefs under

µpri.

B.3 Proof of Proposition 7

We �rst de�ne a function ĝpubT that is similar to gpubT , but excludes the use of the correla-

tion device in the �rst period. Recall that ∆T = 1+ δ+ δ2 + · · ·+ δT−1 is an agent's maximal

equilibrium payo� in the T -period game.

De�nition 2. For every x ∈ [0,∆T ], let ĝpubT (x) denote the minimum payo� of Agent 1 over

all PPEs in E∗(G
pub
T ) that yield Agent 2 the payo� x and do not use the correlation device

in the �rst period.
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The function gpubT is the largest convex function that is smaller than ĝpubT . Therefore, to

prove Proposition 7, it is su�cient to prove that ĝpubT agrees with gpubT , and that under ĝpubT

both agents adhere in the �rst period. To this end we will study some properties of the

function ĝpubT . Obviously, ĝpubT is non-negative, since if an agent adheres in every period, he

guarantees a payo� 0.

Denote by E nc
∗ (Gpub

T ) the set of all PPEs in E∗(G
pub
T ) where no correlation device is used

in the �rst period.

Step 1: Let x ∈ (0, γT ). To implement the outcome
(
v1 = x, v2 = ĝpubT (x)

)
by a PPE in

E nc
∗ (Gpub

T ), both agents adhere in the �rst period.

We �rst argue that x < 1. Indeed, since T ≥ 2, we have γT ≤ δ (see Proposition

6), hence, x < γT ≤ δ < 1. We now argue that ĝpubT (x) < 1. To this end we construct

a PPE σ in E nc
∗ (Gpub

T ) that yields the payo�s (v1 = x, v2 = γT ). This will imply that

ĝpubT (x) ≤ γT ≤ δ < 1.

Step 1 in the proof of Proposition 6 shows that ĝpubT (0) = γT . Therefore, there exists

a PPE σ̃ in E nc
∗ (Gpub

T ) that implements the payo�s (v1 = 0, v2 = γT ). Under σ̃, Agent 1

adheres in all periods. By an argument similar to that in the proof of Proposition 5, we can

modify histories after the �rst period and construct another equilibrium that yields Agent 1

a payo� x, 0 < x ≤ γT ≤ δ. Under this new equilibrium, the correlation device in not used

in the �rst period, and the payo� of Agent 2 remains unchanged. This observation implies

that for every x ∈ (0, γT ), the payo�s (v1 = x, v2 = γT ) can be implemented by a PPE in

E nc
∗ (Gpub

T ). By the de�nition of ĝpubT (x), we have ĝpubT (x) ≤ γT ≤ δ < 1, as desired.

Since under PPEs in E nc
∗ (Gpub

T ), a violation on the equilibrium path yields an agent a

payo� 1, because no correlation device is used, and since ĝpubT (x) < 1, in any PPE that

implements
(
v1 = x, v2 = ĝpubT (x)

)
, both agents must adhere in the �rst period.

Step 2: The function ĝpubT (x) is non-increasing.

By Step 1, to implement the outcome
(
v1 = x, v2 = ĝpubT (x)

)
by a PPE in E nc

∗ (Gpub
T ),

both agents adhere in the �rst period. Therefore, by an argument similar to that in the

proof of Proposition 5, we can modify histories after the �rst period and construct another

equilibrium that yields Agent 1 a payo� x′, for every x < x′ ≤ γT ≤ δ, and keep Agent 2's

payo� ĝpubT (x). Under this new equilibrium no correlation device is used in the �rst period,

and hence ĝpubT (x′) ≤ ĝpubT (x). This completes the proof that the function ĝpubT (x) is non-

increasing.

We have shown that the function ĝpubT is non-negative and non-increasing on [0, γT ],
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ĝpubT (0) = γT , and ĝ
pub
T (γT ) = 0. We next prove that ĝpubT is convex on (0, γT ), and this will

imply that ĝpubT agrees with gpubT .

Step 3: The function ĝpubT is convex on (0, γT ).

To show this, we will prove that

ĝpubT

(
q · x+ (1− q) · y

)
≤ q · ĝpubT (x) + (1− q) · ĝpubT (y),

for every x, y ∈ (0, γT ) and every 0 < q < 1.

Let σ be a PPE in E∗(G
pub
T ) that uses the correlation device in the �rst period and

plays as follows: with probability q the players implement a PPE in E nc
∗ (Gpub

T ) that yields

the payo�s
(
v1 = x, v2 = ĝpubT (x)

)
, and with probability 1 − q they implement a PPE in

E nc
∗ (Gpub

T ) that yields the payo�s
(
v1 = y, v2 = ĝpubT (y)

)
. Then, v1(σ) = qx + (1 − q)y and

v2(σ) = q · ĝpubT (x) + (1− q) · ĝpubT (y).

We will show that there exists a PPE σ in E nc
∗ (Gpub

T ) such that v1(σ) ≤ v1(σ) and

v2(σ) ≤ v2(σ). This observation, together with the fact that ĝpubT is non-increasing (see Step

2), imply that

ĝpubT

( v1(σ)︷ ︸︸ ︷
q · x+ (1− q) · y

)
= ĝpubT

(
v1(σ)

)
≤ ĝpubT

(
v1(σ)

)
≤ v2(σ) ≤ v2(σ) = q · ĝpubT (x) + (1− q) · ĝpubT (y),

and hence the function ĝpubT is convex.

Figure 26: The �rst period under σ.

Suppose σ ∈ E∗(G
pub
T ). The play under σ in the �rst period is as follows (see Figure 26):
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• The PPE that implements
(
v1 = x, v2 = ĝpubT (x)

)
has the following structure:

� In the �rst period, Agent 1 and Agent 2 are inspected with probabilities p1 and

p2, respectively. Both agents adhere.

� If Agent 1 is inspected in the �rst period and found adhering, then from the

second period on the players implement a PPE pro�le in Gpub
T−1 that yields the

payo�s (v1 = W, v2 = X).

� If Agent 2 is inspected in the �rst period and found adhering, then from the

second period on the players implement a PPE pro�le in Gpub
T−1 that yields the

payo�s (v1 = Y, v2 = Z).

� Punishment: If in the �rst period an agent is found violating, then in all future

periods he is inspected with probability 1, he adheres, and the other agent violates.

• The PPE that implements
(
v1 = y, v2 = ĝpubT (y)

)
has the following structure:

� In the �rst period, inspect Agent 1 and Agent 2 with probabilities p′1 and p′2,

respectively. Both agents adhere.

� If Agent 1 is inspected in the �rst period and found adhering, then from the

second period on the players implement a PPE pro�le in Gpub
T−1 that yields the

payo�s (v1 = W ′, v2 = X ′).

� If Agent 2 is inspected in the �rst period and found adhering, then from the

second period on the players implement a PPE pro�le in Gpub
T−1 that yields the

payo�s (v1 = Y ′, v2 = Z ′).

� Punishment: If in the �rst period an agent is found violating, then in all future

periods he is inspected with probability 1, he adheres, and the other agent violates.

By Step 1, both agents adhere in the �rst period, and henceW ≥ f(p1),W
′ ≥ f(p′1), Z ≥

f(p2), and Z
′ ≥ f(p′2). To make the agents' expected payo�s agree with their continuation

payo�s, we must have

x = δ · (p1W + p2Y ), ĝpubT (x) = δ · (p1X + p2Z), (33)

and

y = δ · (p′1W ′ + p′2Y
′), ĝpubT (y) = δ · (p′1X ′ + p′2Z

′). (34)

Set p1 := q · p1 + (1− q) · p′1 and p2 := q · p2 + (1− q) · p′2. Note that p1 + p2 = 1. Consider

the following strategy pro�le σ (see Figure 27):
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Figure 27: The �rst period under σ.

• In the �rst period, Agent 1 and Agent 2 are inspected with probabilities p1 and p2,

respectively. Both agents adhere.

• If Agent 1 is inspected in the �rst period and found adhering, then from the second

period on the players implement a PPE pro�le in Gpub
T−1 that yields the payo�s (v1 =

W, v2 = gpubT−1(W )), where W := q1p1
q1p1+q2p′1

W +
q2p′1

q1p1+q2p′1
W ′.

• If Agent 2 is inspected in the �rst period and found adhering, then from the second

period on the players implement a PPE pro�le in Gpub
T−1 that yields the payo�s (v1 =

gpubT−1(Z), v2 = Z), where Z := q1p2
q1p2+q2p′2

Z +
q2p′2

q1p2+q2p′2
Z ′.

• Punishment: If in the �rst period an agent is found violating, then in all future periods

he is inspected with probability 1, he adheres, and the other agent violates.

Let us verify that σ is a PPE. The crucial part is to show that both agents are better o�

adhering in the �rst period of σ. And indeed, since W ≥ f(p1), W
′ ≥ f(p′1), and since the

function p 7→ pf(p) is linear,

(q1p1 + q2p
′
1)W = q1p1W + q2p

′
1W

′

≥ q1p1f(p1) + q2p
′
1f(p′1)

= (q1p1 + q2p
′
1) · f(q1p1 + q2p

′
1),

(35)

and hence W ≥ f(q1p1 + q2p
′
1) = f(p1). By Proposition 1(i), Agent 1 is better o� adhering

in the �rst period of σ, as desired. A similar argument shows that Z ≥ f(p2), and Agent 2

is better o� adhering in the �rst period of σ as well.

We next show that v1(σ) ≤ v1(σ) and v2(σ) ≤ v2(σ). Because of the convexity of gpubT−1,
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and since X ≥ gpubT−1(W ) and X ′ ≥ gpubT−1(W
′),

gpubT−1(W ) ≤ q1p1
q1p1 + q2p′1

· gpubT−1(W ) +
q2p
′
1

q1p1 + q2p′1
· gpubT−1(W

′)

≤ q1p1
q1p1 + q2p′1

·X +
q2p
′
1

q1p1 + q2p′1
·X ′.

(36)

Similarly,

gpubT−1(Z) ≤ q1p2
q1p2 + q2p′2

· Y +
q2p
′
2

q1p2 + q2p′2
· Y ′. (37)

By Eqs. (33) and (34),

v1(σ) = q1 · x+ q2 · y

= q1 · δ(p1W + p2Y ) + q2 · δ(p′1W ′ + p′2Y
′)

= δ ·
(
q1p1W + q1p2Y + q2p

′
1W

′ + q2p
′
2Y
′). (38)

Next, by the de�nitions of W and Z, the convexity of gpubT−1, and Eq. (37),

v1(σ) = δ ·
(
p1 ·W + p2 · g

pub
T−1(Z)

)
= δ · (q1p1 + q2p

′
1) ·
(

q1p1
q1p1 + q2p′1

·W +
q2p
′
1

q1p1 + q2p′1
·W ′

)
+ δ · (q1p2 + q2p

′
2) · g

pub
T−1

(
Z
)

≤ δ · (q1p1 ·W + q2p
′
1 ·W ′)

+ δ · (q1p2 + q2p
′
2) ·
(

q1p2
q1p2 + q2p′2

· Y +
q2p
′
2

q1p2 + q2p′2
· Y ′
)

= δ ·
(
q1p1W + q1p2Y + q2p

′
1W

′ + q2p
′
2Y
′)

= v1(σ).

(39)

By a similar argument, v2(σ) ≤ v2(σ).

Since under σ no correlation device is used in the �rst period,
(
v1(σ), v2(σ)

)
is a PPE

outcome in E nc
∗ (Gpub

T ). Since v1(σ) ≥ v1(σ) and by Step 2, the payo� vector
(
v1(σ), v2(σ)

)
is a PPE outcome in E nc

∗ (Gpub
T ), and hence ĝpubT

(
v1(σ)

)
≤ v2(σ) ≤ v2(σ). That is, for every

q1 ∈ (0, 1),

ĝpubT

(
q1 · x+ (1− q1) · y

)
≤ q1 · ĝpubT (x) + (1− q1) · ĝpubT (y). (40)

Consequently, for every T ≥ 2, the function ĝpubT is convex, as desired.
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