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Abstract

Often monitoring agencies (principal) do not have enough resources to monitor all

agents, and violations are unavoidable. Questions arise regarding the structure of the

monitoring scheme that minimizes the rate of violations. In dynamic monitoring prob-

lems, the principal can use the past behaviour of agents to determine her monitoring

policy. In this paper, we identify the optimal dynamic monitoring scheme when the

principal has a commitment power, and show that in this scheme agents first “com-

pete” in a tournament, where the one who is monitored more frequently wins. The

winner of the tournament then enjoys lower monitoring intensity, and violates more in

the long run.

1 Introduction

Dynamic inspection problems are abundant: managers inspect their workers, regulatory

agencies inspect firms, and tax authorities inspect taxpayers. More often than not, regulatory

agencies operate under resource constraint: they lack the ability to inspect all agents at all

periods.

When the punishment for a revealed violation is sufficiently high, then even if the per-

period inspection probability is small, agents will refrain from violating the regulations.
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However, the punishment is usually bounded from above by legal constraints (Harrington,

1988), ethical considerations (Becker, 1968), limited liability (Braithwaite, 1981), preserva-

tion of marginal deterrence (Stigler, 1970), or ex post inelasticity of enforcement resources

(Bond and Hagerty, 2010). When resources are limited and punishment is not too high,

violations are unavoidable, and it is important to identify an optimal inspection policy that

minimizes the frequency of violations.

In contrast to the significance of the issue, the theoretical work on the identification of

the optimal monitoring policy in dynamic settings is scarce, and existing works have focused

on stationary policies or policies that are stationary in some state variables. Landsberger

and Meilijson (1982) were the first who allowed the inspection rule to be history dependent:

each agent is assigned to one of two states, depending on his action at the last time he

was inspected. Greenberg (1984) improves upon this scheme by adding to the model a

third state, called the penalty state, and shows that the three-state scheme is optimal for

infinitely patient players. The policies that have been studied in the literature ignore a

significant portion of the behavior of the agents in past periods, and, as it turns out, are far

from optimal when players discount their payoffs. Thus, the question posed by Greenberg

(1984) “what is the optimal auditing scheme, in the sense that given the fixed discount rates,

no other auditing mechanism will result with a smaller number of individuals who will choose

to cheat” remains open.

In line with previous studies, we assume that the inspection agency has a commitment

power. We contribute to the literature by providing a complete characterization for the

optimal (non-stationary) monitoring policy for a fixed discount factor in the presence of two

agents, among which at most one can be inspected in each period. Our results suggest that

compared with stationary policies, inspection agencies can use their budget more efficiently

to increase compliance among the agents.

At a technical level, to analyze the problem, we write down the recursive equation that

describes the optimization problem in terms of the continuation payoffs. Because the resource

constraint creates negative correlation between the inspection probability of the agents, this

equation is not a Bellman equation, and its solution requires new tools.1 We characterize the

optimal policy and the value of the problem, and provide an iterative algorithm to calculate

1For single-agent problems, the recursive approach has been widely used in dynamic contracting problems
(early works include Spear and Srivastava, 1987, and Thomas and Worrall, 1990), while we extend it to
multi-agent problems. Having multiple agents complicates the analysis for two reasons. First, the recursive
characterization of an agent’s value function now depends not only on his past performance, but also on
other agents’ past performance, and hence identifying its solution is more difficult. Second, the recursive
formula is not a standard Bellman equation, and the existence of a minimal solution as well as whether an
iterative approach can approximate this solution do not follow from standard arguments.
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the optimal policy.

It turns out that under the optimal monitoring policy, agents first “compete” in a tour-

nament, in which the agent who is monitored more frequently “wins”. The winner of the

tournament then enjoys lower monitoring intensity and occasionally violates, while the other

agent always adheres. A novel feature of this scheme is that, to win the tournament and to

violate in the long run, an agent need not only behave well, but also have good luck: his

compliance has to be observed by the principal sufficiently more often than that of the other

agent.

Formally, the optimal monitoring scheme consists of two phases. In Phase 1, agents

compete in a tournament that can be described as a “token game”, where the amount of

tokens possessed by an agent corresponds to his expected payoff if adhering in the current

period. Figure 1 provides one possible realization of the token game.

Figure 1: The dynamics in Phase 1 — an example.
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Both agents start the game with the same amount of tokens and the principal starts

by monitoring each agent with probability 0.5. If an agent is found violating, he loses the

tournament right away. Otherwise, the agent who is inspected and found adhering gains

tokens, while the agent who is not inspected loses tokens. In the next period, the principal

adjusts the inspection probabilities according to the number of tokens each agent holds: the

monitoring intensity for an agent is negatively related to the number of tokens he possesses.

Then, again, the agent who is inspected and found adhering gains tokens, and the other

one loses tokens.2 This process continues until one of the agents loses all his tokens and

hence loses the tournament. Phase 2 starts as soon as a winner is selected. In Phase 2,

the winner of the tournament faces lower monitoring intensity and he occasionally violates;

whereas the other agent is inspected with high probability and he always adheres. The

length of Phase 1 is random, yet it ends almost surely. The updating of the tokens and the

monitoring intensities are designed in a specific history-dependent way to ensure that both

agents adhere throughout Phase 1.3

The model we analyze is stylized, with only two agents, no noise on the principal’s ob-

servations, and zero inspection cost within the monitoring constraint. While at a conceptual

level, our result suggests that when violations are unavoidable, the structure of the two-phase

mechanism, a tournament between the agents followed by low monitoring intensities for the

winner of the tournament, takes advantage of the tension between the agents, and improves

their compliance.

Our leading example is in organizational contexts: A principal has limited attention to

spend on monitoring her employees, who have incentives to shirk on their tasks (or violate

certain rules, e.g., corruption). While a large literature has been focusing on the optimal

design of compensation, there are scenarios like governmental organizations, where employ-

ees’ salaries are inflexible, and monetary incentives are absent or very low-powered (see e.g.,

Burgess and Ratto, 2003). Our results imply that in such cases, having the agents “compete”

for a position in which they will be treated more favorably can serve as a means to discipline

their early performance. In particular, occasional shirking of some senior employees could be

a way of the government to motivate junior employees: the government creates a tournament

among junior employees, and those who win the tournament get the benefit to enjoy some

perks.

2Note that the agent with fewer tokens is monitored with a higher intensity, and hence he is more likely
to gain tokens in the next period.

3As players become more patient, the expected length of Phase 1 increases to infinity and the discounted
loss of the principal goes to zero.
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Another example concerns inspection agencies, like the health service department, which

inspects restaurants for hygiene levels; or environmental protection agencies, which inspect

firms that produce air or water pollution. In the environmental regulation for polluting

firms, for instance, it has been well documented that strict monetary penalty is absent (see

e.g., Harrington, 1988, and Harford, 1991), the compliance rate is substantially less than

full,4 and hence a more efficient monitoring scheme is in need.

Our results have several practical implications. First, to minimize her loss, the principal

should allow the agents to violate in pre-specified stages (the “rewarding stages”), which are

strategically allocated to reduce the overall number of violations. In the rewarding stages, no

inspection takes place. The reason is that a positive (even if small) probability of inspection

in a rewarding stage hurts the agent without benefiting the principal. This in turn weakens

the agent’s incentive to adhere in previous periods. In practice, it is observed that greater

compliance typically leads to less enforcement,5 but there is no evidence that the regulatory

attention periodically drops to 0. Our result suggests that compliance can be significantly

improved by employing an inspection scheme with occasional consent to violations.

A second insight is that the rewards to an agent should be delayed as much as possible,

with the exception of histories where the other agent’s payoff drops down to zero. The

backloading of rewards, in fact, is a common feature of dynamic environments without

transfers. To elaborate on this point, notice that in a given period, inspection probabilities

and future rewards are complimentary in deterring an agent from violating: an agent who

violates faces the risk of being detected and thereby punished and losing all his potential

gains. Therefore, a lower inspection probability is needed to discipline an agent with a larger

continuation payoff. When an agent is eligible for a certain amount of rewards, delaying the

reward from today to some later period t implies that a higher reward is at stake for the

agent in periods before t, and hence lower inspection intensities are needed to discipline him

in these periods. This “frees up” inspection resources, which can be used to inspect the

other agent, and reduces overall violations.

Third, the updating of an agent’s continuation payoff depends not only on his own actions,

but also on luck: whether he was inspected and his behavior observed. Indeed, the agent’s

4One well-known early study conducted by the White House Council on Environmental Quality estimated
65% of regulated sources may be in violation of air pollution emission limits (Russell, 1990, p.255). In the
United Kingdom, published compliance rates with many key water quality standards are sometimes as low
as 50% (Heyes, 2000). More recently, the data published by US Environmental Protection Agency (EPA)
shows that in 2009, only 58% of major facilities fully comply with the Clean Air Act (EPA, 2010).

5See, e.g., Dubin and Wilde (1988) and Gray and Deily (1996).
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continuation payoff if he is inspected and found adhering (denoted vAi ) determines whether

the agent adheres or violates in the current period; whereas the agent’s continuation payoff

if he is not monitored (denoted vNIi ) is the same regardless of his current period action, and

it does not affect the agent’s incentive. Since the (weighted) average of vAi and vNIi must be

consistent with previous promised rewards, the principal is better off reducing the latter and

increasing the former. Consequently, the continuation payoff of an agent who is inspected

more often in early periods is high, and he will violate more in the future. As a result, an

agent’s probability of being inspected decreases following an inspection that reveals that the

agent adhered.

Forth, even though both agents behave identically along the first phase, eventually the

agent who is inspected more often in early periods gets all the reward, while the other agent

never gets the chance to violate. That is, even though both agents are eligible for a certain

amount of rewards in Phase 1, the crediting of the rewards is not deterministic: It takes the

form of a “lottery” that gives only the winner the privilege to violate.

Related literature: Our paper is closely related to the literature on dynamic auditing.

Auditing rules in which individuals’ past compliance history affects the future inspection

probability are sometimes referred to as conditional future audit rules in this literature, and

their theoretical analysis is rather scarce. Landsberger and Meilijson (1982) are the first who

allow the inspection scheme to be history dependent, and show that such scheme outper-

forms any static mechanism. Greenberg (1984) improves upon this scheme by adding a third

state into the model, and showing that the three-state scheme is optimal for infinitely pa-

tient players. Harrington (1988), Harford and Harrington (1991), and Harford (1991) adapt

these simple auditing mechanisms to environmental control problems, thereby explain the

phenomenon of high compliance in the absence of strict enforcement. Previous works on dy-

namic auditing have focused either on simple stationary policies, or policies that are optimal

only when players are infinitely patient. We contribute to this literature by identifying the

optimal (non-stationary) monitoring scheme for a fixed discount factor.

Our paper is also related to the literature on dynamic contracting without transfers (see,

e.g., Fong, 2009, Li et al., 2017, Guo and Hörner, 2018, and Lipnowski and Ramos, 2018).

All these works focus on single-agent problems, and their conclusions can be applied to

multi-agent problems in which it is optimal to treat each agent separately.6 In these works,

under the optimal policy, the agent is assigned a “score”, which is updated according to

6This is the case when, for instance, the principal faces no resource constraint and the cost for monitoring
is linear in the number of inspections.
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his past performance. Once the score reaches either a lower bound or an upper bound, the

continuation policy adopts the form of either indefinite punishment or indefinite reward.

In contrast to previous works, we study the game with multiple agents and under limited

monitoring resources. A tension between the agents, which is absent in the single-agent

problem, is created. In our optimal scheme, the future payoff of an agent depends not only

on his own performance, but also on the performance of the other agent. In contrast, in the

single-agent problem, an agent’s payoff depends only on his own behavior.

Lazear (2006), and Eeckhout et al. (2010) also study optimal monitoring under limited

resources, but these works focus on static models. The feature of competition between agents

has some similarities to Carrasco et al. (2019), which studies a problem where two privately

informed players repeatedly take a joint action, and the optimal dynamic incentives imply

that one of the agents becomes a dictator in the long run. In a recent paper, Varas et al.

(2020) consider a dynamic model of inspections that involves a single agent, and identify the

optimal dynamic monitoring scheme.

Another related literature concerns dynamic allocations. de Clippel et al. (2021) studies

a model with one principal and several agents. Each agent generates a new idea in each

period, which is of either good or bad quality, and decides whether to propose this idea

to the principal. An agent always prefers his idea to be implemented, regardless of the

quality. Like in our model, the principal has limited attention, hence she cannot evaluate all

proposals. The goal is to design a mechanism without transfers that achieves the first-best

outcome, where agents only report good quality ideas. In contrast, in our paper we focus on

the case where the first-best outcome cannot be achieved.

Allowing monetary transfers, Board (2011) and Andrews and Barron (2016) study prob-

lems where a principal (firm) dynamically allocates business among several agents (suppliers).

Acknowledging the difficulty of fully characterizing the optimal allocation rule, Board (2011)

derives a number of economically interesting results. In particular, it is optimal for the prin-

cipal to be “loyal” to a subset of “insider” agents, with whom she has previously traded. One

major difference between the selection of insiders in Board (2011) and the selection of the

lucky agent in our paper is that, in the two-agent version of Board (2011), the tournament

ends after the first period; whereas in our model, the tournament lasts for multiple periods

and its length is randomly determined.7 Andrews and Barron (2016) relax Board’s liquidity

7In Board (2011), the principal can always lower an agent’s payoff to zero by not trading with him.
Therefore, after the first period, rewarding the “insider” while yielding the “outsider” a continuation payoff
zero is optimal. This stands in sharp contrast with our model, where lowering an agent’s continuation payoff
to zero requires a high monitoring intensity, which may not be feasible given the constraint on the other
agent’s payoff. Therefore, a key step in the analysis is the study of the optimal way to discipline an agent
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constraint on the agents, and introduce imperfect monitoring to the moral hazard problem.

They also focus on the first-best outcome and characterize a dynamic allocation rule that

attains it.

The paper is organized as follows. The model is presented in Section 2 and the main

results are described in Section 3. Comments and extensions appear in Section 4. Proofs

are relegated to the Appendix.

2 Model

2.1 Participants and their action sets

We study a repeated inspection game between a principal and two agents. At every period,

the principal inspects (at most) one of the agents and each agent decides whether to Adhere

or to Violate.

The action set of agent i, i = 1, 2, is Ai := {A, V }, and the action set of the principal is

A0 := {I1, I2, ∅}, where ∅ stands for no inspection, and I1 (resp. I2) for inspecting Agent 1

(resp. Agent 2). Throughout the paper, whenever a variable refers to the principal we add

the subscript 0, and whenever it refers to agent i we add the subscript i.

2.2 The stage payoff

The gain of each agent from adhering is normalized to 0, and his gain from an undetected

violation is normalized to 1. The agent’s loss from a detected violation is denoted by c > 0.

The value of c is exogenously given, say, by legal constraints.8 Consequently, the stage payoff

function of agent i, denoted ui, is given by:

ui(a) =


0 if ai = A,

−c if ai = V and a0 = Ii,

1 if ai = V and a0 6= Ii,

(1)

where a = (a0, a1, a2) is the vector of actions played at the current stage. The principal loses

1 for each violation, detected or undetected. Therefore, the principal’s stage loss function,

when the other agent is subject to a certain amount of reward.
8In Section 4.3 we relax this assumption and allow the principal to choose a punishment level within a

certain range. We will argue that the principal is better off always choosing the most severe punishment and
hence our results remain intact.
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denoted u0, is given by:

u0(a) =


2 if a1 = a2 = V ,

1 if ai = A and aj = V for i 6= j,

0 if a1 = a2 = A.

(2)

The form of the principal’s loss function implies that we focus on the principal’s incentive

to deter violations, rather than on her incentive to collect the penalties. There are several

interpretations for this assumption. First, in the absence of monetary penalties, the punish-

ment can only take the form of, say, public reprimand, which hurts the agent but does not

benefit the principal. Second, even if the punishment takes the form of monetary penalties,

it may not be comparable with the damage caused by the violation behaviour, as they are

in different dimensions. For instance, in the environmental control problem, the damage

caused by a marine oil spill is difficult to evaluate with monetary payment.

Eq. (2) also implies that inspections are costless for the principal, and the only restriction

is on the number of inspections that can be conducted simultaneously. This assumption fits

scenarios where the principal has a fixed number of inspectors at her disposal, and the

hiring of additional inspectors is impractical either because of budget constraint or lack of

positions.9

In the one-shot game, an agent will adhere (resp. violate) as long as the probability to

be inspected is larger (resp. smaller) than 1
1+c

. Therefore, if c > 1, the principal can deter

both agents from violating by inspecting each agent with probability 1
2
. This observation

implies that when the fine for violation is sufficiently large, the principal can completely

deter violations. In the rest of the paper we will focus on the nontrivial case c < 1.

Assumption 1. 0 < c < 1.

When c is less than 1, in the one-shot game an agent will adhere only if the inspection

probability at the current period is larger than 1
1+c

> 1
2
. The best the principal can do in

the one-shot game is to deter one agent from violating, while allowing the other agent to

violate. This asymmetric strategy outperforms the symmetric strategy that inspects each

agent with probability 1
2
, and does not deter any of the agents from violating.

9In a model where the principal faces no resource constraint and there is a fixed cost for each inspection,
it is optimal to treat each agent independently, and the problem is reduced to a single-agent problem.
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2.3 Monitoring structure and histories

In the repeated game, at the end of each period, the two agents observe the principal’s action.

If the principal monitors one of the agents at that period, the action of the monitored agent

is publicly observed. This is equivalent to the situation in which the players observe at

the end of each period a public signal y, drawn from the set Y = {V1, A1, V2, A2, ∅}, with

the interpretation that the signal ∅ means that no agent was inspected, and the signal Ai

(resp. Vi) means that agent i was inspected and found adhering (resp. violating). In Remark

3 we discuss the private monitoring case, where the actions of the principal and of the

inspected agent are not observed by any uninspected agent.

We assume that the players have at their disposal a public correlation device, which

outputs at the beginning of every period t a random signal ζt that is uniformly distributed

on the interval [0, 1] and independent of past history.

In the repeated game, the only public information available in period t is the (t − 1)-

period history of public signals (which contains the elements of Y and the outcomes of the

correlation device), denoted ht. The set of finite-length public histories is denoted by H .

Remark 1. The public correlation device is crucial in some parts of the analysis. On the

equilibrium path, however, the use of the correlation device is minimal (see Remark 2 below)

and its impact becomes negligible when players are patient.

2.4 Strategies

A strategy of the principal is a function from the set of public histories to the set of her

mixed actions. Denoting by ∆A0 the set of mixed actions of the principal, a strategy of the

principal is a function

σ0 : H → ∆A0.

Denote by B0 the set of strategies of the principal in the infinite repeated game.

It is assumed that the principal announces her entire inspection strategy at the beginning

of the game and she is able to commit to it. The commitment power enables the principal

to achieve a higher payoff compared with the case where such a commitment is absent, and

therefore the principal is always better off committing to a strategy, if possible.

Since the principal has a commitment power, her entire strategy is known to the agents

from the outset of the game. A public strategy for an agent is a strategy that assigns a mixed

action to every strategy of the principal and every public history. Without loss of generality,
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we assume that the agents use only public strategies.10 Formally, for i = 1, 2, a strategy of

agent i is a function

σi : B0 ×H → ∆Ai,

where ∆Ai is the set of mixed actions of agent i.

2.5 Payoffs

A play is an infinite sequence of action profiles a ≡ (a1, a2, a3...) ∈ A N, where A = A0 ×
A1 ×A2 is the set of all action profiles.

Every vector of players’ strategies σ = (σ0, σ1, σ2) induces a probability distribution Pσ

over the set of infinite plays. We denote by Eσ the expectation operator that corresponds

to this probability distribution. Agent i’s discounted payoff under strategy vector σ is

vi(σ) := Eσ

[
∞∑
t=1

δt−1ui(a
t)

]
, (3)

where δ is the common discount factor. The principal’s discounted loss v0(σ) is similarly

defined.

Note that the agents know their stage-game payoff, while the principal does not. This

is because the principal knows only the action of the inspected agent, and she is therefore

unaware of the damage inflicted on her by the uninspected agent.

2.6 Equilibrium

Denote the subgame following the announcement of an inspection strategy σ0 by Γ(σ0). We

study agent perfect public equilibria (agent PPE) of the subgame Γ(σ0).

Given a player i, for each history ht and each strategy σi, player i’s continuation strategy

given history ht, denoted σi|ht , is defined by

σ0|ht(hτ ) := σ0(h
thτ ), ∀hτ ∈H .

The pair of strategies (σ1, σ2) is an agent PPE of the subgame Γ(σ0) if for every public

history ht ∈H , the pair of strategies (σ1|ht , σ2|ht) is an agent Nash equilibrium of Γ(σ0|ht).
10Conditional on the public history, each agent’s private information (that is, his uninspected past actions)

is independent from the private information of the other agent. Therefore, for any equilibrium strategy in
which agents use their private information, we can find a public-strategy equilibrium which yields the same
outcome.
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We will often abuse the terminology and call the triplet σ = (σ0, σ1, σ2) a PPE if (σ1, σ2) is

an agent PPE of Γ(σ0). Denote by E the set of all PPEs σ = (σ0, σ1, σ2). Our goal is to

identify a PPE σ∗ that yields the principal the minimum loss:

σ∗ ∈ argmin
σ∈E

v0(σ). (4)

When the agents are very impatient, the principal will not be able to deter more violations

than in the one-shot game. We therefore focus only on relatively patient agents. In particular,

we assume that δ ≥ 1−c2
1−c2+c (see Section 4.5 for a detailed discussion).

Assumption 2. δ ≥ 1−c2
1−c2+c .

3 Main Results

3.1 No violation-free inspection strategy

Our first observation is that regardless of the inspection strategy adopted, at least one agent

violates infinitely often.

Proposition 1. For every PPE, with probability 1 the number of violations along the play

is infinite.

Proof. Fix a PPE σ = (σ0, σ1, σ2). We first prove that at least one agent violates on the

equilibrium path. Since c < 1, one of the agents is inspected with probability p < 1
1+c

in the

first period. It follows that p · (−c) + (1 − p) · 1 > 0. Therefore, this agent can guarantee

a positive expected payoff, by violating in the first period and adhering in all subsequent

periods. This implies that in every equilibrium, at least one player obtains a positive payoff

by violating.

If (σ1, σ2) is an agent PPE of Γ(σ0), then (σ1, σ2)|ht is an agent PPE of Γ(σ0|ht). This

observation, together with the previous result, imply that in any PPE, after every history,

at least one of the agents obtains a positive payoff. Proposition 1 follows.

The practical implication of Proposition 1 is that, the goal of the principal is not to

deter violations completely, but rather to manage violations optimally; that is, to make the

violations as rare as possible.
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3.2 Reducing the set of PPEs

In this section, we show that to solve the principal’s optimization problem (4), it is sufficient

to consider a subset of all PPEs. Specifically, we will show that we can restrict attention to

PPEs that satisfy the following conditions:

(i) The agents play pure strategies and whenever an agent is indifferent between adhering

and violating, he adheres.

(ii) On the equilibrium path the principal never inspects an agent who violates. Equivalently,

the loss of the principal equals the sum of payoffs of the agents.

(iii) Whenever an agent is inspected and found violating, he is punished most severely by

being inspected with probability 1 in all future periods.

Formally, for every strategy σi of player i ∈ {0, 1, 2} and every action ai ∈ Ai, denote

by σi(ai|ht) the conditional probability that player i plays action ai at history ht, where the

initial history is h0.

Proposition 2. Let σ be a PPE. Then there exists a PPE, denoted σ̂ = (σ̂0, σ̂1, σ̂2), which

satisfies v0(σ̂) = v0(σ) and the following conditions:

(i) σ̂1 and σ̂2 are pure strategies. If an agent i is indifferent between adhering and violating

at some history ht, then σ̂i(A|ht) = 1.

(ii) v0(σ̂) = v1(σ̂) + v2(σ̂).

(iii) For every finite history ht that occurs with positive probability, vi(σ̂|(ht,Vi)) = 0 and

σ̂0(Ii|(ht, Vi, hτ )) = 1 for every public history hτ ∈H .

Proof. See Appendix A.1.

Proposition 2 is technically useful, as it restricts the set of PPEs that we should consider.

Moreover, the proposition has significant practical implications regarding the structure of the

optimal inspection scheme. First, whenever an agent is supposed to violate in equilibrium,

he knows that he will not be inspected. Therefore, the principal will never detect violations,

and any detected violation implies that the inspected agent deviated. This further implies

that, an agent who is inspected and found violating is punished in the most severe way.

Part (i) of Proposition 2 holds because the correlation device can be used to mimic lot-

teries performed by the agents. To illustrate Part (ii), recall that by Eqs. (1)–(2), every gain

of 1 unit by an agent is the loss of 1 unit of the principal, and in addition, any violation

that is inspected reduces the gain of the violating agent without reducing the loss of the

principal. Hence, for every strategy profile σ, the principal’s loss is no less than the sum of

payoffs of the two agents: v0(σ) ≥ v1(σ) + v2(σ), with strict inequality if some violations
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are observed by the principal with positive probability. According to Proposition 1, in every

PPE, violations occur infinitely often. Inspecting an agent with positive probability in a

stage in which the agent’s equilibrium action is Violate hurts the agent without benefiting

the principal. Thus, as stated in Part (ii), there is an alternative inspection strategy that

yields the principal the same loss and does not inspect the agents in those stages in which

they violate. For PPEs that satisfy Part (ii), violations are not inspected on the equilibrium

path, and therefore any detected violation implies that the inspected agent deviated. This

allows us to reduce further the set of PPEs that should be considered in the minimization

problem (4) by assuming that an inspected agent who is found violating is punished in the

most severe way.

Denote by E∗ the set of all PPE profiles that satisfy Proposition 2. Under every PPE

σ = (σ0, σ1, σ2) in E∗, an agent violates if and only if he is inspected with probability 0,

hence in the subgame Γ(σ0), the agent PPE in E∗ is uniquely determined. This observation

is summarized in the following proposition.

Proposition 3. Suppose that σ = (σ0, σ1, σ2) ∈ E∗. Then in the subgame Γ(σ0), the strategy

pair (σ1, σ2) is the unique agent PPE in E∗.

We next provide an example for an inspection scheme σ0 and its corresponding agent

PPE.

Example 3.1. Consider the inspection strategy σ0, where the principal always inspects

Agent 1 and never inspects Agent 2. Agent 1’s best response, denoted σ1, is to always

adhere, while Agent 2’s best response, denoted σ2, is to always violate. The reader can

verify that the strategy vector σP,1 := (σ0, σ1, σ2) is in fact a PPE in E∗, which yields Agent

1 a payoff 0 and Agent 2 a payoff 1
1−δ . The analogous PPE with the roles of the two agents

exchanged, denoted σP,2, yields Agent 1 a payoff 1
1−δ and Agent 2 a payoff 0.

3.3 Simplifying the incentive compatibility constraint

We turn to analyze the means to deter violations in the repeated game. As argued before, in

the one-shot game, an agent violates as long as the inspection probability for him is less than
1

1+c
. In contrast, in the repeated game, taking into account the effect of his current-period

action on future payoffs, an agent who is inspected with a probability less than 1
1+c

may well

adhere.
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In a certain period where Agent 1 is inspected with probability p < 1
1+c

, if Agent 1

violates, he obtains

v1(V1) =
(
(1− p)− c · p

)
+ δ ·

(
p · vV11 + (1− p)vNI1

)
, (5)

where vV11 (resp vNI1 ) is Agent 1’s continuation payoff if he is inspected an found violating

(resp. if he is not inspected). The first term of the RHS of Eq. (5) represents Agent 1’s first

period gain from violation, and the second term represents his future payoffs, depending on

whether Agent 1 is inspected or not in the current period. If Agent 1 adheres, he obtains

v1(A1) = 0 + δ ·
(
p · vA1

1 + (1− p)vNI1

)
,

where vA1
1 is Agent 1’s continuation payoff if he is inspected an found adhering.

By adhering rather than violating, Agent 1 loses in the current period, but he gains in

future periods if his adhering behaviour is observed by the principal. If the latter effect is

sufficiently high, that is, the agent’s continuation payoff if being found adhering is sufficiently

higher than his continuation payoff if being found violating (the latter value is zero for PPEs

in E∗), then the agent is better off adhering. As the next proposition shows, the following

function f : (0, 1]→ R+ measures this difference (see Figure 2):

f(p) :=

{
1−(1+c)p

δp
if 0 < p < 1

1+c
,

0 if 1
1+c
≤ p ≤ 1.

(6)

Figure 2: The function f(p).
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Proposition 4. Suppose that σ is a PPE in E∗. Then for every history ht that occurs with

positive probability, agent i adheres if and only if vi(σ|(ht,Ai)) ≥ f
(
σ0(Ii|ht)

)
.

Proof. See Appendix A.2.

Proposition 4 asserts that, an agent who is inspected with probability p adheres if and

only if his continuation payoff upon being inspected and found adhering is at least f(p).

Thus, f(p) is the minimal rewards to an agent who is inspected with probability p so that

he adheres.

This result has two implications. First, the fact that f is non-increasing reflects the prop-

erty that in a given period, inspection probabilities and future rewards are complimentary

in deterring an agent from violating. Indeed, the higher the probability of inspection, the

less attractive it is to violate, hence a lower compensation is needed to ensure that the agent

adheres. On the other hand, since an agent who violates faces the risk of losing all his poten-

tial gains, when an agent faces a larger amount of rewards, a lower inspection probability is

needed to discipline him. A second implication is that, the optimal response of an agent in

a given period depends only on his continuation payoff if he is inspected in that period. In

contrast, the agent’s continuation payoff if he is not inspected, which is the same regardless

of his current-period action, does not affect the agent’s incentive compatibility constraint.

3.4 Disciplining one agent

In this section, as a benchmark, we present the optimal way to discipline one agent while

ensuring the payoff of the other agent is 0. This result will be used in the next section for

the construction of the optimal inspection strategy.

To ensure that Agent 2’s payoff is 0, he should be inspected in each period with probability

at least 1
1+c

. Consequently, Agent 1 is inspected with probability at most c
1+c

in each period.

By Proposition 4, an agent who is inspected with probability c
1+c

adheres only when his

continuation payoff in the eventuality that he is inspected and found adhering is at least

f( c
1+c

). By Assumption 2, f( c
1+c

) ≤ 1
1−δ , where 1

1−δ is the maximal payoff to an agent in

the game. This guarantees that an agent who is inspected with probability as low as c
1+c

is willing to adhere, so long as he is allowed to violate sufficiently often in future periods.11

The next proposition shows that in this case, the optimal PPE yields Agent 1 a payoff 1−c2
1+c−δ ,

which is lower than 1
1−δ .

11If, instead, Agent 1 is impatient and f( c
1+c ) >

1
1−δ , then even the highest promise for the future reward

cannot deter Agent 1 from violating, and in any PPE in which Agent 2’s payoff is 0, Agent 1 will violate in
all stages.
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Proposition 5. Among all PPEs in E∗ that yield Agent 2 the payoff 0, the minimal payoff

to Agent 1 is 1−c2
1+c−δ .

Proof. See Appendix A.3.

Given that Agent 2 obtains 0, the optimal way to discipline Agent 1 is not unique. Here

we identify a periodic rewarding scheme that contains cycles of length d. There exist other

inspection strategies that induce the same payoff. One of them, which has a stationary

flavor, is described in Appendix A.4.

Roughly speaking, the periodic rewarding scheme is composed of cycles of length d. In the

first d−1 periods of each cycle, Agent 1 is inspected with probability c
1+c

. If ever he is caught

violating, Agent 1 is punished and will be inspected in every future period with probability

1. While if he is not found violating during the d− 1 periods, Agent 1 is “rewarded” by not

being inspected in the dth period of the cycle, and he will violate in that period. If d is not

too large, the optimal responses of Agent 1 is to adhere in the first d − 1 periods of each

cycle and violate only in the dth period. While keeping Agent 1’s incentive compatibility

constraints (that is, Agent 1 is willing to adhere in the first d− 1 periods in each cycle), the

principal chooses d as large as possible, so as to minimize the rate of violations.

Remark 2. Denote the optimal choice of the cycle length by d∗. If d∗ is not an integer, for

example, d∗ = 8.2 when c = 0.7 and δ = 0.9, then the length of the cycle is random and is

determined at the end of the 7th period of the cycle: with some probability the 8th period is

the rewarding period and the cycle has length 8, and with the remaining probability the 9th

period is the rewarding period and the cycle has length 9. When players are rather patient,

d∗ is large, and the impact of the public correlation device becomes negligible. As will be

shown in the next section, when using the cyclic rewarding scheme to construct the optimal

inspection mechanism, this is the only role of the public correlation device.

Naturally, by reducing the length of the rewarding cycles in σ(d) from the optimal one

(hence increasing the rewarding intensity), Agent 1’s incentive compatibility constraints

remain kept. Therefore, while keeping Agent 2’s payoff at 0, every z ∈ [ 1−c2
1+c−δ ,

1
1−δ ] can be

supported as an Agent 1’s PPE payoff. This is the content of the next proposition.

Proposition 6. For every z ∈ [ 1−c2
1+c−δ ,

1
1−δ ], there exists a PPE that yields Agent 1 and Agent

2 the payoffs z and 0, respectively.

Proof. See Appendix A.5.
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3.5 Optimal PPE

3.5.1 Optimal PPE payoff

We are now ready to present the optimal PPE in the presence of two agents. To this end, it

is crucial to identify the boundary of the PPE payoff set. For every v1 ∈ [0, 1
1−δ ], denote by

g(v1) the minimal payoff that Agent 2 gets, where the minimum is over all PPE outcomes in

E∗ that yield Agent 1 the payoff v1.
12 By standard continuity arguments, g(v1) is attained

by some PPE in E∗.13 Figure 3 provides a graphical illustration of g. As we will show in

Appendix A.6, g is non-negative, non-increasing, and continuous. Moreover, because of the

use of the correlation device, g is convex. By the symmetry between the agents, this function

further satisfies g
(
g(x)

)
= x for every x ∈ (0, 1−c2

1+c−δ ). By Proposition 5, g intersects with the

x-axis (resp. y-axis) at ( 1−c2
1+c−δ , 0) (resp. (0, 1−c2

1+c−δ )).

Figure 3: The function g.

Since we consider PPEs in E∗, when Agent 1’s payoff is x and Agent 2’s payoff is g(x), the

principal’s loss is x+g(x). Consequently, the optimal payoff of the principal is the minimum

12The minimal payoff of Agent 1 in a PPE is 0 and is obtained by the strategy profile σP,1 defined in
Example 3.1. The maximal payoff of Agent 1 in a PPE is 1

1−δ and is obtained by the strategy profile σP,2

defined in Example 3.1. Using the correlation device to choose one of these two PPEs at the outset of the
game, we deduce that the set of possible PPE payoffs of Agent 1 is [0, 1

1−δ ].
13Because a limit of equilibria in E∗ is an equilibrium in E∗, the minimum in the definition of g(x) is

attained. Indeed, it is standard (though a little bit tedious because of the presence of the correlation device)
to show that any sequence {σk}k∈N of PPEs has an accumulation point σ̂. Since the payoffs are discounted,
σ̂ is a PPE. We argue that σ̂ is in E∗. By continuity, σ̂ satisfies Parts (ii) and (iii) of Proposition 2. To see
that σ̂ satisfies Part (i), note that if σ̂i(V |h) = 1 for some agent i, then for every k sufficiently large we have
σki (V |h) = 1, and by Proposition 2(ii) it implies that σk0 (Ii|h) = 0, and hence σ̂0(Ii|h) = 0. Therefore, agent
i strictly prefers violating at the history h under σ̂.
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of x + g(x). By the properties of g (see Figure 3), the minimum is attained at the point

x∗, where g(x∗) = x∗. The next Theorem provides a recursive characterization of g, which

uniquely determines this function.14

Theorem 1. The function g is the minimal function that satisfies

g(x) = δ · w
(

1− w−1
(x
δ

))
for every x ∈

(
0,

1− c2

1 + c− δ

)
, (7)

where

w(p) :=

{
p · f(p) + (1− p) · g

(
f(1− p)

)
if 0 < p ≤ 1,

1
δ

+ g(0) if p = 0.
(8)

Proof. See Appendix A.7.

As will be shown in the next section, the description of the optimal PPE heavily relies on

Theorem 1, hence we explain the derivation of Eqs. (7) and (8). The recursive representation

of g in Eq. (7) is equivalent to the following characterization. Given that Agent 1 obtains a

payoff x, the minimal PPE payoff of Agent 2 is attained by:

g(x) = min
p1

δ ·
[
p1 · vA1

2 + (1− p1) · vA2
2

]
s.t. x = δ ·

[
p1 · vA1

1 + (1− p1) · vA2
1

]
(vA1

1 , vA1
2 ) =

(
f(p1), g

(
f(p1)

))
,

(vA2
1 , vA2

2 ) =
(
g
(
f(1− p1)

)
, f(1− p1)

)
,

(9)

where (vA1
1 , vA1

2 ) (resp. (vA2
1 , vA2

2 )) is the continuation payoff vector of the agents if Agent 1

(resp. Agent 2) is inspected in the first period and found adhering.

The term in the minimization is the expected continuation payoff, discounted by one

period. This representation is equivalent to saying that to implement the payoff vector(
x, g(x)

)
, Agent 2 adheres in the first period. The first condition ensures that Agent 1’s

current-period payoff agrees with his continuation payoffs and Agent 1 also adheres in the first

period. The second and the third conditions on the continuation payoff vectors imply that:

(i) the incentive compatibility constraints of the two agents are binding – the continuation

payoff of an agent who is inspected and found adhering is the minimal amount that makes

14The recursive characterization of g in Theorem 1 is restricted to the interval (0, 1−c2
1+c−δ ). Outside this

interval, g(0) = 1−c2
1+c−δ , and g(z) = 0 for all z ∈ [ 1−c2

1+c−δ ,
1

1−δ ]. The function g is hence well defined on the

whole interval [0, 1
1−δ ].
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him adhere at the current period; and (ii) regardless of which agent is inspected in the

current period, the continuation payoff vector lies on the boundary of the PPE payoff set –

the continuation payoff of the agent who is not inspected is set to be as low as possible.

In fact, the real number p1 that satisfies the last condition is uniquely determined. The

function g is then the minimal solution to the following two equalities:

x = δ ·
(
p1 · f(p1) + (1− p1) · g

(
f(1− p1)

))
= δ · w(p1), (10)

and

g(x) = δ ·
(
p1 · g

(
f(p1)

)
+ (1− p1) · f(1− p1)

)
= δ · w(1− p1), (11)

which is equivalent to the recursive characterization in Theorem 1. Intuitively, δw(p) is the

payoff of an agent who adheres when facing the inspection probability p.

Note that the recursive characterization in Eqs. (7) and (8) is not a standard Bellman

equation, since w is a composite function of g. Therefore, the existence of a minimal solution

is not straightforward. We show that the minimal solution to Eq. (7) does exist, and it can

be approximated by the following iterative algorithm: let g0 := 0; for every natural number

k, define wk using Eq. (8) with g = gk, and define gk+1 using Eq. (7) with w = wk. As k

increases, the function gk converges to the minimal solution to Eq. (7). As an example, let

c = 0.7 and δ = 0.9. Figures 4 and 5 show the simulation result for the functions (gk)
4
k=1,

and g. The optimal PPE payoff is attained at x∗ = 0.19, which yields the principal a loss

x∗ + g(x∗) = 0.38.

Since Theorem 1 is crucial for the construction of the optimal PPE, we provide a sketch

of its proof.

Sketch of proof for Theorem 1.

Step 1: Suppose x ∈ (0, 1−c2
1+c−δ ). We first show that to implement the payoff vector(

x, g(x)
)
, both agents adhere in the first period (Lemma 5). Given that Agent 1 obtains x,

delaying his violation to periods after some t rather than letting Agent 1 violate immediately,

implies that a higher reward is at stake for Agent 1 in periods before t, and hence lower

inspection intensities are needed to deter Agent 1 from violating in these periods. This,

roughly speaking, frees up early inspection resources, which can be used to inspect Agent 2,

and reduces the number of his violations. Since x = g
(
g(x)

)
, by reversing the roles of the

two agents, a similar argument can be made to show that Agent 2 also adhere in the first

period.
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Figure 4: The first four iterations of
gk when c = 0.7 and δ = 0.9.

Figure 5: The function g when c =
0.7 and δ = 0.9.

The function g then must satisfy the following characterization:

g(x) = min
p1,v

A1
1 ,v

A1
2 ,v

A2
1 ,v

A2
2

δ ·
[
p1 · vA1

2 + (1− p1) · vA2
2

]
s.t. vA1

1 ≥ f(p1),

vA2
2 ≥ f(1− p1),

(vA1
1 , vA1

2 ) ∈ E∗,

(vA2
1 , vA2

2 ) ∈ E∗,

x = δ ·
[
p1 · vA1

1 + (1− p1) · vA2
1

]
.

(12)

The first and second conditions are incentive compatibility constraints, and ensure that both

agents are better off adhering in the first period. The third and forth conditions guarantee

that the continuation payoffs of the agents is a PPE outcome in E∗. The last condition

ensures that Agent 1’s current-period payoff agrees with his continuation payoffs. The value

g(x) minimizes Agent 2’s payoff under these conditions.

Step 2: We further show that to solve the minimization problem (12), both incentive

compatibility constrains are binding, and hence vA1
1 = f(p1) and vA2

2 = f(1 − p1). That

is, the continuation payoff of an agent who is inspected and found adhering is the minimal

amount that makes him adhere at the current period. This result is not straightforward:

Increasing the continuation payoff vA1
1 of Agent 1 above f(p1) leads to a decrease in the
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continuation payoff vA1
2 of Agent 2, hence it is not clear whether such a change benefits or

hurts the principal.

We prove this result by contradiction. Suppose, to the contrary, that vA1
1 > f(p1). This

implies that while keeping agents’ continuation payoffs at history A1 to be (vA1
1 , vA1

2 ), even

if Agent 1 faces a slightly lower inspection intensity, he is still willing to adhere in the first

period. Therefore, the principal can shift some monitoring intensities from Agent 1 to Agent

2, without violating Agent 1’s incentive compatibility constraint. We show that because of

the convexity of g and since (vA1
1 , vA1

2 ) 6= (vA2
1 , vA2

2 ), as Agent 2 is inspected with a higher

probability, the continuation payoffs of the agents at history A2 can be made lower than

the weighted average of (vA1
1 , vA1

2 ) and (vA2
1 , vA2

2 ) (see Lemma 9 for a detailed discussion).

Therefore, shifting monitoring intensities from Agent 1 to Agent 2 benefits the principal.

This leads to a contradiction to the assumption that
(
v1 = x, v2 = g(x)

)
is on the boundary

of the PPE payoff set. An analogous argument applies to the case vA2
2 > f(1− p1).

Step 3: We then show that, conditional on Agent 1 (resp. Agent 2) being inspected in

the first period and obtaining a continuation payoff f(p1) (resp. f(1−p1)), the other agent’s

continuation payoff is set to be as low as possible. In other words, regardless of which agent

is inspected in the first period, the continuation payoff vector lies on the boundary of the

PPE payoff set. The part vA1
2 = g(vA1

1 ) is intuitive: Since our goal is to minimize Agent

2’s expected payoff while keeping Agent 1’s payoff to be x, and since Agent 2’s continuation

payoff if he is not monitored, vA1
2 , does not affect his current period incentive, the value

vA1
2 is set to be as low as possible. The part vA2

1 = g(vA2
2 ) is less straightforward. This is

because Agent 1’s continuation payoff if he is not monitored, vA2
1 , affects Agent 1’s expected

payoff in period 1, which is pre-determined as x. But recall that the agents are symmetric

and x = g
(
g(x)

)
. That is, given that Agent 2 obtains g(x), the quantity x is the minimal

payoff that Agent 1 can get among equilibria in E∗. This observation implies that, the part

vA2
1 = g(vA2

2 ) follows from a similar argument as before, by reversing the roles of the agents.

The minimization problem can therefore be rewritten as Eq. (9), and the recursive char-

acterization of g in Theorem 1 follows.

3.5.2 Optimal PPE strategy

Our next goal is to provide an explicit characterization of the PPE that implements the

optimal payoff vector.

Theorem 2. The following strategy profile σ∗ is a PPE in E∗ and is optimal for the principal.

Phase 1:
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P1.1 In the first period the principal inspects each agent i with probability p1i := 1
2
.

Both agents adhere.

P1.2 For every t ≥ 2, if no violation is detected before period t, then in period t

the agent who is inspected in period t− 1, denoted i, is inspected with probability

pti := w−1
(
f(pt−1

i )

δ

)
< pt−1i , and the other agent is inspected with the remaining

probability 1− pti. Both agents adhere.

P1.3 Repeat stage P1.2 until the first period t in which the inspection probability

for one of the agents, denoted agent i∗, drops below f−1( 1−c2
1+c−δ ) and in addition

this agent happens to be inspected again in the current period. Phase 2 starts

when this event happens.

Denote by pni∗ the probability by which agent i∗ is inspected in the period in which

Phase 1 ends.

Punishment. If an agent is found violating in Phase 1, he will be inspected with

probability 1 in all future periods, he will adhere in all future periods, and the

other agent will violate in all future periods.

Phase 2: The principal implements the cyclic rewarding scheme described in Section

3.4 that yields agent i∗ the payoff f(pni∗) ≥ 1−c2
1+c−δ . The other agent is inspected with

probability 1
1+c

and adheres in every period.

Proof. See Appendix A.8.

In Phase 2, there are multiple ways to implement the desired payoffs, and the cyclic

rewarding scheme we characterized in Section 3.4 is only one of them. Phase 1, in contrast,

is more delicate, and its description follows from the recursive characterization of function

g in Theorem 1 (we discuss the uniqueness of this structure in Section 4.1). To better

understand the structure of Phase 1, we can describe it as a “token game” between the two

agents, with the tokens represent an agent’s expected payoff if he adheres in the current

period.

In the first period, the principal inspects each agent with probability 1
2
, and the agents

hold the same amount of tokens x∗, where x∗ is the point at which g(x∗) = x∗. Depending

on the realization of the principal’s first-period action, the agent who is inspected and found

adhering gains tokens and his amount of tokens increases to f(1
2
) > x∗; while the agent who is

not inspected loses tokens and his amount of tokens decreases to g(f(1
2
)) < x∗. In the second

period, the principal adjusts the inspection probabilities according to the updated amount of

tokens held by each agent: the agent with more tokens is inspected with a lower probability
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p2i <
1
2
, and the other agent is inspected with a higher probability. Again, depending on

the realization of the principal’s second-period action, the agent who is inspected and found

adhering gains tokens, and the other agent loses tokens (see Proposition 10 in Appendix

A.8).

The exact number of tokens that are added to and subtracted from each player is derived

from the recursive characterization of g in Theorem 1: If agent i is inspected at period t

and found adhering, the amount of tokens he holds increases to f(pti), and the amount of

tokens the other agent holds decreases to g
(
f(pti)

)
. The inspection intensity in each period

is then uniquely determined by the value that makes the continuation payoffs (the amount

of future tokens) agree with previous commitment. Consequently, in each period of Phase 1,

each agent’s incentive compatibility constraint is binding, and the agents’ payoff vector lies

on the lower boundary of the PPE payoff set.

The process continues until one of the agents loses all his tokens. This agent loses the

tournament and Phase 1 ends. The length of Phase 1 is random, yet it ends almost surely.15

In the case where c = 0.7 and δ = 0.9, the distribution of Phase 1’s length in 10, 000 trials is

shown in Figure 6, with an average of 7.86. Due to parameter values, in this case the lowest

possible length of Phase 1 is 3.

Figure 6: Distribution of Phase 1’s length when c = 0.7 and δ = 0.9.

15Indeed, if there were a public finite history ht after which Phase 1 ends with probability q smaller than
1, then, conditioned that the history ht occurs, the probability that Phase 1 ends before stage t+k converges
to q as k goes to infinity. Therefore, for every ε > 0 there is a positive integer k such that conditioned that
the history ht occurs, the probability that Phase 1 ends after stage t + k is smaller than ε. This in turn
implies that there is a finite public history of length t+k which is an extension of ht such that at this history
the expected continuation payoff of both agents is smaller than ε, contradicting Proposition 1 and the fact
that σ∗ is a PPE.
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Remark 3. The PPE σ∗ described in Theorem 2 can be turned into an agent sequential

equilibrium in the game where monitoring is private and the uninspected agent does not

learn the outcome of the inspection. This is because (i) under σ∗0 the principal is never idle,

hence in the subgame Γ(σ∗0) an agent who is not inspected can infer that the other agent is

inspected, and (ii) under σ∗ the agents play in a deterministic way, hence in the subgame

Γ(σ∗0) each agent can also infer the action played by the other agent.

4 Discussion

4.1 Uniqueness of the optimal scheme

In Theorem 1 we characterized the lower bound on the set of PPE outcomes, and identified

the payoff vector that yields the minimum violations. In Theorem 2 we provided one inspec-

tion strategy that implements the optimal payoff. The question we address in this section is,

whether the PPE characterized in Theorem 2 is unique in implementing the desired payoff.

We will argue that the structure of Phase 1 is unique under mild assumptions.

Since g is convex and symmetric, the minimum of the principal’s loss is obtained at

the point x∗ where the two agent’s payoffs are the same (x∗ = g(x∗)). This implies that

under the optimal scheme the two agents are treated identically in the first period and each

is inspected with probability 0.5 (see Appendix A.8 for a detailed argument). Appendix

A.7.1 further shows that as long as both agents’ payoffs are positive (Phase 1), the dynamics

characterized in Theorem 2 is uniquely optimal among inspection schemes that (i) do not

use public correlation device, and (ii) do not assign a positive probability to no inspection.16

Once an agent’s payoff reaches zero and Phase 2 starts, to implement the desired payoff

of the other agent, there are many different approaches. The cyclic scheme characterized in

Section 3.4 is one option. Another implementation of Phase 2 that has a stationary flavor

is described in Appendix A.4. A third implementation, which is not included in the paper,

involves delaying the reward in Phase 2 as long as possible.

16Even without these assumptions, we tend to believe that the optimal dynamics in Phase 1 is unique.
Nevertheless, to formally prove this result, a key step is to show that g is strictly convex on [0, g(0)]. Even
though from numerical simulations this seems to hold, but a formal proof is too involved so we omit it in
our paper.
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4.2 Noise in detecting violations

In our model we assume that if an agent who violates is inspected, the violation is detected

with probability 1. In fact, the structure of the optimal policy is robust to a small noise in

monitoring.

Suppose that monitoring fails to detect violation with probability ε, yet adherence is

properly detected. In this case, the expected cost of violation (for the agent) decreases.

Consequently, to induce an agent who is inspected with probability p to adhere in a certain

period, the minimum reward if the agent is found adhering increases from (6) to

fε(p) :=

{
1−(1+c)p(1−ε)

δp(1−ε) if 0 < p < 1
1+c

,

0 if 1
1+c
≤ p ≤ 1.

(13)

An argument similar to the proof of Proposition 2 holds, and agents always adhere on

the equilibrium path. Therefore, the noise in monitoring affects only the amount of reward

claimed by the inspected agent. As long as ε is small and an analogous version of Assumption

2 holds, the qualitative structure of the optimal policy remains unchanged (and the proof is

analogous to the proof of Theorem 1).

4.3 Flexible punishment levels

In this paper we assume that the punishment c on a detected violation is fixed. Suppose,

instead, that whenever a violation is detected, the principal can choose a punishment c in

some given range [c, c], where c > c ≥ 0. In this case, Proposition 2 still applies, violation

is never detected in equilibrium, and the principal always sets c = c. The reason is that a

detected violation signifies a deviation, and by inflicting the maximal possible penalty c, the

inspection makes deviations less profitable.

This result contrasts some literature in repeated punishment, where a repeated offender

is being punished more severely compared with a first time offender. The use of varying

punishment levels is typically driven by some form of incomplete information. For instance,

Polinsky and Rubinfeld (1991) assume that agents have different characteristic (or offense

propensity), which are not observed by the enforcement authority, and Mungan (2010) as-

sumes that repeated violators may gain experience, which lead them to be detected with a

lower probability in their subsequent violations.
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4.4 Dropping the commitment power of the principal

To support the optimal strategy profile σ∗ as an equilibrium, the principal’s commitment

power is essential. Indeed, a deviation by the principal in a given period does not affect her

payoff in that period, since her payoff is determined by the agents’ actions, but it affects the

agents’ continuation play. One way in which the principal could gain by deviating from σ∗0

is by re-allocating monitoring probabilities across agents in the tournament phase (Phase 1)

so that it never ends.17 Since in Phase 1 both agents adhere, this will lower the loss of the

principal to 0.

Every PPE in the game where the principal has no commitment power constitutes a

PPE in our model (with commitment). Consequently, a principal with no commitment

power is not able to obtain a payoff better than the optimal payoff (with commitment) that

is identified in Section 3.

4.5 Small δ that violates Assumption 2

In our analysis we assume that the agents are not too impatient, namely δ ≥ 1−c2
1−c2+c (or

equivalently, f( c
1+c

) ≤ 1
1−δ ). We now discuss the complementary case.

If the agents are very impatient, explicitly, if δ < 1−c
2−c , we have f(1

2
) > 1

1−δ and the

loss from not violating of an agent who is inspected with probability at most 1
2

cannot be

compensated by future violations. Hence the principal can do no better than using the

myopic strategy. Thus, in this case the repetition of the stage game does not benefit the

principal.

If 1−c
2−c ≤ δ < 1−c2

1−c2+c , the principal can do better than the myopic strategy, but the

inspection scheme characterized in Theorem 2 is no longer optimal. This is because now

there exists p̂ ∈ ( c
1+c

, 1
2
] such that an agent who is inspected with probability less than p̂

cannot be deterred from violating, even if this agent is promised that in the eventuality that

he is inspected and found adhering, he will be inspected with probability 0 in all subsequent

periods. Consequently, the principal must reward the agents already along Phase 1. The

detailed analysis is tedious and uninspiring, hence we leave it out of the paper.

17For instance, suppose in period 5 the principal should inspect Agent 1 with probability 0.2 and Agent 2
with probability 0.8. Suppose also that if Agent 1 is inspected, Phase 1 ends, otherwise, Phase 1 continues.
The principal, who has an incentive to prolong Phase 1, can benefit from inspecting Agent 2 with probability
1, instead of 0.8.
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For Online Publication

A Appendix

A.1 Proof of Proposition 2

A.1.1 Proof of Proposition 2(i)

A mixed PPE is a strategy profile (σ0, σ1, σ2), where σ0, σ1, and σ2 are behavior public

strategies, and for every finite history ht, the pair (σ1|ht , σ2|ht) is an agent Nash equilibrium

of the subgame Γ(σ0|ht). In this section we show that the principal’s payoff in every mixed

PPE can be attained in a pure PPE that satisfies the conditions in Proposition 2(i).

As a first step, we show that every mixed PPE σ is realization equivalent to a pure

PPE σ′ (that does not necessarily satisfy Proposition 2(i)). The idea is to mimic agents’

mixed actions using the correlation device. In the second step, we show that there exists

another PPE σ that yields the principal the same payoff as σ′ and whenever an agent is found

deviating, he is inspected with probability 1 in all future periods. This change guarantees

that off-equilibrium paths satisfy the conditions in Proposition 2(i). Finally, in Step 3, we

show that there exists a pure PPE σ̂ that yields the principal the same payoff as σ and

satisfies the conditions in Proposition 2(i).

Step 1: Mimicking σ by a pure PPE σ′.

Suppose that σ is a mixed PPE. Let σ′ be the strategy profile σ with the exception that

the correlation device replaces the lotteries made by the agents. That is, if under σ1 at the

history ht Agent 1 adheres with probability 0 < p < 1, then under σ′1 Agent 1 at ht adheres

if and only if the outcome of the correlation device is in some set C that has probability p

(and is otherwise independent of the players’ strategies). The strategy profiles σ and σ′ are

payoff equivalent. Since (σ1|ht , σ2|ht) is an agent Nash equilibrium of the subgame Γ(σ0|ht)
for every finite history ht, so is the pair (σ′1|ht , σ′2|ht). It follows that strategy profile σ′ is a

pure PPE.

Step 2: Modifying the play off-the-equilibrium.

We now construct a strategy profile σ by modifying σ′ according to the following rule. If

agent i is inspected and found deviating, he is punished most severely: from the following

period and on he will be inspected with probability 1. The agent being punished will adhere

and the other agent will violate. Since σ differs from σ′ only at histories that are off-the-

equilibrium, since deviations are less profitable in σ than in σ′, and since agents follow an

agent PPE after a deviation is detected, it follows that σ is a PPE that yields the players
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the same payoffs as σ′.

Step 3: Constructing a pure PPE σ̂ that yields the principal the same payoff as σ and

satisfies the conditions in Proposition 2(i).

Since the strategy σ is pure, we have to consider only histories under which an agent

who is indifferent between adhering and violating chooses Violate with probability 1 under

σ. Such a history must occur on the equilibrium path, because by Step 2, off-the-equilibrium

path the agent who is inspected with probability 1 strictly prefers adhering, and the other

agent strictly prefers violating. We now construct a PPE under which Agent 1 is inspected

with probability 0 at this history, so that violating becomes a strictly preferable action.

Let σ̂ be the strategy profile that is derived from σ with the following changes: Suppose

that at a given history, denoted ht, an agent (say, Agent 1) is indifferent between adhering

and violating and violates with probability 1. Then (a) at history ht, when the lottery made

by the principal tells her to inspect Agent 1, she does not inspect any agent, and (b) for the

continuation of the play she (and the agents) act as if Agent 1 was inspected and violated.

The modification of σ̂ at ht increases Agent 1’s payoff at ht, and does not affect the

principal’s loss, nor Agent 2’s payoff. Since ht is on the equilibrium path, this modification

does not affect the equilibrium property in earlier stages. Since the modification in σ̂ does

not affect Agent 2’s payoff, it does not change Agent 2’s best response. It follows that σ̂ is a

PPE, and, relative to σ, the payoff of the agents increase while the principal’s loss remains

the same.

A.1.2 Proof of Proposition 2(ii)

In this section we prove Proposition 2(ii), which states that we can assume that the principal’s

loss is equal to the sum of payoffs of the two agents. Suppose that σ = (σ0, σ1, σ2) is a PPE

under which

v0(σ) > v1(σ) + v2(σ), (14)

i.e., the loss of the principal exceeds the total gain of the agents. By Eqs. (1)–(2), this

can happen only if under a history on the equilibrium path, an agent violates while he is

inspected with positive probability. That is, there exists a history hk that occurs with positive

probability under σ, such that σ0(Ii|hk) > 0 and σi(V |hk) = 1 for some agent, say, Agent 1.

Then, by a similar argument as Step 3 in Section A.1.1, we can construct an alternative PPE

that yields the principal the same payoff as σ, and instead of inspecting Agent 1 with positive

probability, the principal inspects him with probability 0 at history hk, and uses a public

correlation device at the beginning of the next period to mimic the original continuation
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play. As in Section A.1.1, this change does not affect Agent 2’s incentives, and, since we

increase Agent 1’s payoff only at histories on the equilibrium path, Agent 1’s incentives are

not affected either.

By repeating this argument for every history hk that occurs with positive probability in

equilibrium and satisfies σ0(Ii|hk) > 0 and σi(V |hk) = 1 for some agent i, we can construct a

PPE σ̂ = (σ̂0, σ̂1, σ̂2) under which whenever σ̂i(V |hk) = 1, we have σ̂0(Ii|hk) = 0. Proposition

2(ii) follows.

A.1.3 Proof of Proposition 2(iii)

Let σ be a PPE that satisfies v0(σ) = v1(σ) + v2(σ), which implies that under σ no violation

is observed on-the-equilibrium path. If a violation is detected, then necessarily the inspected

agent deviated. Let σ̂ be similar to σ, except that violations are followed by indefinite

punishment, the punished agent adheres and the other agent violates. Formally, if Agent 1

is found violating at history hk, then from period k onward the principal inspects Agent 1

with probability 1. By a similar argument as in Step 1 in Section A.1.1, σ̂ is a PPE that

yields the players the same payoff as σ.

A.2 Proof of Proposition 4

The behavior of an agent at a given period depends on the probability he is inspected, as well

as on the continuation payoffs following every eventuality. The next lemma, which implies

Proposition A.2, provides the explicit relationship between these parameters that ensure

that an agent adheres.

Lemma 1. Let σ = (σ0, σ1, σ2) be a PPE in E∗, and let i ∈ {1, 2} be an agent. For every

finite history hk ∈H , we have σi(A|hk) = 1 if and only if

vi(σ|(hk,Ai))− vi(σ|(hk,Vi)) ≥
(1−σ0(Ii|hk))−c·σ0(Ii|hk)

σ0(Ii|hk)·δ . (15)

Proof. Without loss of generality let i = 1. Fix a finite public history hk, and denote by

p1 := σ0(I1|hk) the probability that Agent 1 is inspected at history hk. If Agent 1 violates,

his payoff at hk is

E ≡ (1− p1)− c · p1 + (1− p1)δvNI1 + p1δ · v1(σ|(hk,V1)), (16)

where vNI1 is Agent 1’s expected continuation payoff if he is not inspected at hk. If Agent 1
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adheres, his payoff at hk is

F ≡ 0 + (1− p1)δvNI1 + p1δ · v1(σ|(hk,A1)). (17)

It is worth noting that Agent 1’s expected continuation payoff at hk if he is not inspected

does not depend on the action he actually plays. Subtracting Eq. (16) from Eq. (17), we

obtain

F − E = p1δ
(
v1(σ|(hk,A1))− v1(σ|(hk,V1))

)
−
(
(1− p1)− cp1

)
.

Since σ ∈ E∗, we have σi(A|hk) = 1 if and only if F − E ≥ 0, and the claim follows.

Proposition 4 follows from Proposition 2(iii) and Lemma 1.

A.3 Proof of Proposition 5

We first describe a PPE that yields the payoff vector
(
v1 = 1−c2

1+c−δ , v2 = 0
)
. We will then

prove that this is the lowest PPE payoff for Agent 1, provided that Agent 2 obtains 0.

In any PPE that yields Agent 2 a payoff 0, Agent 2 is always inspected with probability
1

1+c
, and he always adheres. We therefore focus only on the inspection for Agent 1. Consider

the following strategy profile σ:

1. In the first period, inspect Agent 1 with probability c
1+c

. Agent 1 adheres.

2. If Agent 1 is inspected and found adhering, his continuation payoff is f
(

c
1+c

)
, and

the players continue with a strategy profile that implements this payoff vector (will be

explained later).

3. If Agent 1 is not inspected, the players forget past play and restart implementing σ.

4. Punishment: if Agent 1 is found violating, he is inspected with probability 1 in all

future periods, and he will always adhere.

By Proposition 4, adhering is the best response of Agent 1 in the first period of σ. Denote

v1 = v1(σ) the payoff of Agent 1 under σ. Then v1 = δ·
(

c
1+c
· f( c

1+c
) + 1

1+c
· v1
)
, and therefore

v1 = 1−c2
1+c−δ .

The rest of this section describes a cyclic rewarding scheme that yields Agent 1 a payoff

f( c
1+c

). Consider the following strategy profile σ(d) = (σ0(d), σ1(d), σ2(d)), where d is a

natural number:
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1. In the first d − 1 periods of the cycle, inspect Agent 1 with probability c
1+c

. Agent 1

adheres.

2. If Agent 1 is not found violating in these d− 1 periods, in the dth period of the cycle

the principal inspects Agent 1 with probability 0, and Agent 1 violates. A new cycle

starts from the next period.

3. Punishment: if Agent 1 is found violating, he is inspected with probability 1 in all

future periods, and Agent 1 will adhere in all future periods.

In σ(d), Agent 1 violates once every d periods. Agent 1’s payoff v1(σ(d)) = δd−1 · 1
1−δd

is decreasing in the cycle length d. Denote by d∗ the solution to v1(σ(d)) = f( c
1+c

). If d∗ is

an integer, then σ(d∗) is a PPE, which yields Agent 1 the payoff f( c
1+c

), as desired. Note

that under σ(d), Agent 1 is willing to adhere in each of the first d − 1 periods in a given

cycle, because Agent 1’s continuation payoff upon being inspected and found adhering is at

least f
(

c
1+c

)
(because of discounting, the continuation payoff of Agent 1 in some periods

may exceed f
(

c
1+c

)
).

If d∗ is not an integer, for example, d∗ = 8.2 when c = 0.7 and δ = 0.9, then the length

of the cycle is random and determined at the end of the 7th period of the cycle: with some

probability the 8th period is the rewarding period and the cycle has length 8, and with the

remaining probability the 9th period is the rewarding period and the cycle has length 9. The

probability is chosen to ensure that the expected payoff of Agent 1 is f( c
1+c

).

We now show that any payoff lower than 1−c2
1+c−δ is not attainable. The inspection proba-

bility for Agent 1 in every period is at most c
1+c

. Because of discounting, it is not optimal

to allow the agent to violate in the first period and to deter him from violating in later peri-

ods.18 Indeed, if under some PPE σ′ Agent 1 violates in the first period, the principal would

profit by skipping the first period, and starting the implementation of σ′ from the second

period. Therefore, an optimal scheme deters Agent 1 from violating in the first period. By

Proposition 4, Agent 1 adheres in the first period when he is inspected with probability p

only if his continuation payoff in the eventuality that he is inspected and found adhering is

at least f(p). Denote by v1 the lowest PPE payoff for Agent 1. If Agent 1 is not inspected

in the first period, then his lowest equilibrium payoff is still v1. Therefore,

v1 ≥ min
0≤p≤ c

1+c

δ ·
(
p · f(p) + (1− p)v1

)
. (18)

18Agent 1 adheres in at least one period. Indeed, by Assumption 2, f( c
1+c ) ≤

1
1−δ , and Agent 1 can be

deterred from violating in at least one period.
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The right-hand-side of Eq. (18) is minimized at p = c
1+c

and Eq. (18) solves to v1 ≥ 1−c2
1+c−δ .

A.4 Generating PPE payoffs (v1 = f(p), v2 = f(1− p)) with station-

ary rewards

In this section we identify an inspection strategy that yields Agent 1 and Agent 2 the payoffs

f(p) and f(1 − p), respectively, for every p ∈ [ c
1+c

, 1
1+c

]. This result, together with the

definition of the function g, implies that for every p ∈ [ c
1+c

, 1
1+c

],

g
(
f(1− p)

)
≤ f(p). (19)

Set q1 = (1 − δ) · f(p) and q2 = (1 − δ) · f(1 − p). Consider the following strategy

profile σ = (σ0, σ1, σ2) that is periodic with length 1 and uses the correlation device, which

determines one out of four behaviors in each period.

• As long as no agent is found violating, at each period:

1. With probability q1 · q2 the principal inspects no agent. Both agents violate.

2. With probability q1 · (1 − q2) the principal inspects Agent 1 and Agent 2 with

probabilities 0 and 1− p, respectively. Agent 1 violates and Agent 2 adheres.

3. With probability (1 − q1) · q2 the principal inspects Agent 1 and Agent 2 with

probabilities p and 0, respectively. Agent 1 adheres and Agent 2 violates.

4. With probability (1 − q1) · (1 − q2) the principal inspects Agent 1 and Agent 2

with probabilities p and 1− p, respectively. Both agents adhere.

• If an agent is found violating, he is inspected with probability 1 in all future periods,

he adheres in all future periods, and the other agent violates in all future periods.

We argue that the strategy profile σ is a PPE that yields Agent 1 and Agent 2 the

payoffs f(p) and f(1 − p), respectively. Since σ is stationary and since under σ Agent 1

violates in each period with probability q1, Agent 1’s payoff, denoted v1, solves the equation

v1 = q1 + δv1, hence v1 = q1
1−δ = f(p). Analogously, Agent 2’s payoff, denoted v2 satisfies

v2 = f(1− p).
We next focus on the histories under which no violation has been detected. Agent 1 vio-

lates whenever he is inspected with probability 0, and adheres whenever he is inspected with

probability p. Proposition 4 implies that he cannot profit by deviating from σ1. Similarly,
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Agent 2 cannot profit by deviating from σ2. It follows that σ is a PPE that yields Agent 1

and Agent 2 the payoffs f(p) and f(1− p), respectively.

Note that with p = 1
1+c

we obtain a PPE that yields Agent 1 the payoff f( c
1+c

) and Agent

2 the payoff 0. In this case q2 = 0.

A.5 Proof of Proposition 6

Proposition 6 follows from Proposition 5 and the next lemma, which asserts that if (v1 =

y1, v2 = y2), y1 <
1

1−δ , can be supported as a PPE outcome, then (v1 = γ, v2 = y2), where

γ ∈ (y1,
1

1−δ ], can also be supported as a PPE outcome.

Lemma 2. Suppose there exists a PPE σ = (σ0, σ1, σ2) ∈ E∗ such that v1(σ) = y1 and

v2(σ) = y2, where y1 <
1

1−δ . Then for every γ ∈ (y1,
1

1−δ ] there exists another PPE σ′ =

(σ′0, σ
′
1, σ

′
2) ∈ E∗ such that v1(σ

′) = γ and v2(σ
′) = y2.

Proof. Let σ′′ be the strategy profile that is derived from σ with the following changes: (a)

whenever the principal is supposed to inspect Agent 1, she does not inspect any agent, yet

(b) for the continuation of the play she (and the agents) act as if Agent 1 was inspected

and adhered, and (c) Agent 1 always violates. The reader can verify that σ′′ is a PPE,

v1(σ
′′) = 1

1−δ , and v2(σ
′′) = y2. By using a proper correlation device that chooses at the

outset of the game whether the players implement σ or σ′′ we obtain a PPE σ′ that satisfies

the conditions of the lemma.

A.6 Properties of function g

Proposition 7. (i) The function g is non-negative and non-increasing; (ii) The function g is

convex; (iii) g(0) = 1−c2
1+c−δ and g( 1−c2

1+c−δ ) = 0; (iv) The function g is continuous on [0, 1−c2
1+c−δ ];

(v) For every x ∈ (0, 1−c2
1+c−δ ), we have g

(
g(x)

)
= x.

Since an agent can guarantee himself a payoff 0 by always adhering, g(x) ≥ 0. We turn

to prove that g is monotonic. Suppose x′ > x. By Lemma 2, the vector (x′, g(x)) can be

supported as a PPE payoff. By the definition of g(·), we have g(x′) ≤ g(x). It follows that

g is non-increasing. The convexity of the function g described in Part (ii) follows from the

use of the correlation device, and it implies the continuity of g on (0, 1−c2
1+c−δ ]. We will prove

later that g is also continuous at x = 0. Part (iii) is an easy corollary of Proposition 5.

To see why Part (v) holds, we fix x ∈ (0, 1−c2
1+c−δ ) and suppose that g

(
g(x)

)
< x. Since g is

non-increasing and continuous, there exists y < g(x) such that g(y) = x. This implies that

(v1 = x, v2 = y) can be supported as a PPE outcome, contradicting the definition of g(x).
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We turn to prove the continuity of g at 0. By Part (iii), we have 1−c2
1+c−δ = g(0). Since g is

non-increasing (by Part (i)) and bounded, the limit y := limx↘0 g(x) exists and y ≤ 1−c2
1+c−δ .

Suppose that y < 1−c2
1+c−δ . We claim that g(y) > 0. Indeed, if g(y) = 0, then the payoffs

(v1 = y, v2 = 0) can be supported as a PPE outcome, contradicting g(0) = 1−c2
1+c−δ . Denote

x′ := g(y). By the definition of y and since g is non-increasing, for every k ∈ N, we have

g(0 + 1
k
) ≤ y. This observation, together with Lemma 2, implies that for every k ∈ N the

vector (v1 = 1
k
, v2 = y) can be supported as a PPE payoff, contradicting g(y) = x′ > 0.

Consequently, we have y = 1−c2
1+c−δ , as desired.

A.7 Proof of Theorem 1

We first define a function ĝ : [0, 1−c2
1+c−δ ]→ [0, 1

1−δ ] that is similar to g, but excludes the use of

the correlation device in the first period. We will characterize the structure of a PPE that

implements the payoff vector
(
v1 = x, v2 = ĝ(x)

)
(Proposition 8). As a corollary, we obtain

the functional representation of ĝ (Corollary 1). We then show that in fact, ĝ is convex and

it agrees with g (Proposition 9).

Definition 1. For every x ∈ [0, 1−c2
1+c−δ ], let ĝ(x) be the minimum payoff of Agent 2 over all

PPEs that yield Agent 1 the payoff x and do not use the correlation device in the first period.

By a similar argument as the one given in Section 3.5, the minimum in the definition of

ĝ(x) is attained. Note that to attain ĝ(x), the correlation device may be used after period 1.

Proposition 8. Let x ∈ (0, 1−c2
1+c−δ ).

(i) The following strategy profile σ̂ is a PPE in E∗ that yields Agent 1 the payoff x and does

not use the correlation device in the first period:

(a) In period 1 the principal inspects Agent 1 with probability p1 := w−1
(
x
δ

)
and Agent 2

with probability 1− p1, where the function w is defined in Eq. (8). Both agents adhere.

(b) If Agent 1 is inspected in the first period and found adhering, from the second period

the players implement a strategy profile that yields the payoffs
(
v1 = f(p1), v2 = g(f(p1))

)
.

(c) If Agent 2 is inspected in the first period and found adhering, from the second period

the players implement a strategy profile that yields the payoffs
(
v1 = g(f(1 − p1)), v2 =

f(1− p1)
)

Punishment: if an agent is found violating in the first period, he is inspected with proba-

bility 1 in all future periods.

(ii) Moreover, σ̂ implements the payoffs
(
v1 = x, v2 = ĝ(x)

)
.
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Proof. We already argued (in Section 3.5) that w(p) is strictly decreasing on [0, 1
1+c

]. It

can be verified that w( 1
1+c

) = 0, and hence the function w−1(x) is well defined on [0, w(0)].

Since w(0) = 1
δ

+ g(0), it can be verified that 1−c2
1+c−δ < δ · w(0), and hence p1 = w−1

(
x
δ

)
, is

well defined for x ∈ (0, 1−c2
1+c−δ ). Part (i) of Proposition 8 follows by Proposition 4 and the

definition of w. Part (ii) of Proposition 8 will be proven in Subsection A.7.1.

Figure 7 shows graphically the payoffs of the two agents and the principal’s play in the

first period under σ̂.

Figure 7: The first period under σ̂.

Proposition 8 implies in particular that ĝ(x) = δ · w
(
1− w−1

(
x
δ

))
. Indeed, to make the

expected discounted payoff agree with the continuation payoffs we have

x = 0 + δ ·
(
p1 · f(p1) + (1− p1) · g

(
f(1− p1)

))
= δ · w(p1), (20)

and

ĝ(x) = 0 + δ ·
(
p1 · g

(
f(p1)

)
+ (1− p1) · f(1− p1)

)
= δ · w(1− p1). (21)

Eq. (20) holds if and only if p1 = w−1
(
x
δ

)
. Replacing p1 in Eq. (21) with w−1

(
x
δ

)
, we obtain

that the function ĝ must satisfy ĝ(x) = δ · w
(
1− w−1

(
x
δ

))
. We thus proved the following

characterization of the function ĝ.

Corollary 1. For every x ∈ (0, 1−c2
1+c−δ ),

ĝ(x) = δ · w
(

1− w−1
(x
δ

))
, (22)

where

w(p) :=

{
p · f(p) + (1− p) · g

(
f(1− p)

)
if 0 < p ≤ 1,

1
δ

+ g(0) if p = 0.
(23)
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Below we will show that ĝ(x) = g(x) for x ∈ (0, 1−c2
1+c−δ ), hence Corollary 1 provides the

characterization of g stated in Theorem 1. We will also prove that this characterization

provides a recursive algorithm to approximate the function g.

By Definition 1, the function ĝ is defined only on the interval [0, 1−c2
1+c−δ ]. We next define a

one-stage optimal operator, θ : [0,∞)→ [0,∞), that agrees with ĝ on the interval [0, 1−c2
1+c−δ ].

Let θ : [0,∞]→ [0,∞) be the function

θ(x) :=

{
δ · w

(
1− w−1

(
x
δ

))
if 0 ≤ x ≤ δw(0),

0 if x > δw(0).
(24)

As argued above, δw(0) > 1−c2
1+c−δ . The next proposition states that the function θ is convex.

As we will see later, this result implies that no correlation device in needed in Phase 1.

Proposition 9. The function θ is convex on [0,∞).

Proof. See Section A.7.2.

By Proposition 9, to implement (v1 = x, v2 = g(x)) for x ∈ (0, 1−c2
1+c−δ ), the correlation

device is not needed in the first period. This implies that the function g agrees with ĝ

for every x ∈ (0, 1−c2
1+c−δ ). Let He ⊂ H be the set of finite histories ht that occur with

positive probability under the optimal PPE σ̂ that is described in Proposition 8 and satisfy

v1(σ̂|ht) ∈ (0, 1−c2
1+c−δ ). The agents’ payoffs under every history ht ∈He can be written in the

form v2(σ̂|ht) = ĝ
(
v1(σ̂|ht)

)
. Therefore, Proposition 8 defines a strategy profile that does not

use the correlation device as long as both agents’ payoffs are in the range (0, 1−c2
1+c−δ ). Note

that by Proposition 7, g(x) ∈ (0, 1−c2
1+c−δ ) for x ∈ (0, 1−c2

1+c−δ ).

We complete the proof of Theorem 1 by showing, in Section A.7.3, that the minimal

solution to Eq. (7) exists, and we provide an iterative algorithm to approximate it.

A.7.1 Proof of Proposition 8

As mentioned earlier, we need to prove only Part (ii) of Proposition 8. Let E nc
∗ be the set of

all PPEs in E∗ where no correlation device is used in the first period.

We start by studying some properties of the function ĝ (Lemmas 3 and 4). Fix x ∈
(0, 1−c2

1+c−δ ) and denote by σ a PPE in E nc
∗ that implements (v1 = x, v2 = ĝ(x)). Using the

properties of ĝ, we show that in the first period of σ both agents adhere (Lemma 5) and the

principal is not idle (Lemma 6). We then show that if agent i is inspected and found adhering

in the first period, his continuation payoff from period 2 and on is f(σ0(Ii)) (Lemma 9), and

the other agent’s continuation payoff from period 2 and on is g (f(σ0(Ii))) (Lemma 8).
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Lemma 3. Let x ∈ (0, 1−c2
1+c−δ ). For every x′ ∈ (x, 1−c2

1+c−δ ], the payoff vector (v1 = x′, v2 =

ĝ(x)) can be supported as a PPE outcome in E nc
∗ .

Proof. Lemma 3 differs from Lemma 2 in two respects: while in Lemma 2 the principal

could use the correlation device in the first period, in Lemma 3 she cannot, and while in

Lemma 2 the upper bound on the payoff x′ was 1
1−δ , in Lemma 3 it is 1−c2

1+c−δ . To prove

Lemma 2, we had the principal select at the outset, using the correlation device, whether to

implement the vector (x, g(x)) or the vector ( 1
1−δ , g(x)) as PPE. Here, since the correlation

device is not used, the principal can make the choice only at the beginning of the second

period. Assumption 2 implies that 1−c2
1+c−δ <

δ
1−δ . Since by assumption the principal can

implement the payoff vector (x, ĝ(x)) without using the correlation device in the first period,

by properly increasing the continuation payoff of Agent 1 from the second stage and on while

keeping Agent 2’s continuation payoff (as done in Lemma 2), the principal can implement

the payoff (x′, ĝ(x)) for every x′ ∈ (x, 1−c2
1+c−δ ).

Lemma 4. (i) The function ĝ is non-negative and non-increasing on [0, 1−c2
1+c−δ ]; (ii) ĝ(0) =

1−c2
1+c−δ and ĝ( 1−c2

1+c−δ ) = 0.

Proof. If an agent adheres in every period, he guarantees payoff 0. Therefore ĝ is non-

negative. The fact that ĝ is non-increasing on [0, 1−c2
1+c−δ ] follows from Lemma 3. We next

show that Part (ii) of Lemma 4 holds. The inspection strategy constructed in Section 3.4

that implements the payoffs (v1 = 0, v2 = 1−c2
1+c−δ ) does not use the correlation device in the

first period. Therefore ĝ(0) ≤ 1−c2
1+c−δ and ĝ( 1−c2

1+c−δ ) ≤ 0. Since ĝ(0) ≥ g(0) = 1−c2
1+c−δ , we have

ĝ(0) = 1−c2
1+c−δ . Since the function ĝ is non-negative, ĝ( 1−c2

1+c−δ ) = 0.

We use the properties of ĝ to study the structure of the PPE that implements (v1 =

x, v2 = ĝ(x)).

Lemma 5. Let x ∈ (0, 1−c2
1+c−δ ). Suppose that σ ∈ E nc

∗ is a PPE that implements (v1 = x, v2 =

ĝ(x)). Then under σ both agents adhere in the first period.

Proof. Throughout the proof we restrict attention to PPEs in E nc
∗ . If x < 1 and ĝ(x) < 1,

then Lemma 5 holds since a violating agent gains 1, which exceeds each agent’s total payoff.

We next consider the case where at least one agent’s payoff is no less than 1.

Let ĝaa(x) be the lowest PPE payoff of Agent 2 when Agent 1 obtains x and both

agents adhere in the first period, let ĝav(x) (resp. ĝva(x)) be the lowest PPE payoff of Agent

2 when Agent 1 obtains x and only Agent 1 (resp. Agent 2) adheres in the first period,
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and let ĝvv(x) be the lowest PPE payoff of Agent 2 when Agent 1 obtains x and both

agents violate in the first period. If there does not exist a PPE in E nc
∗ under which Agent

1 obtains x and both agents adhere in the first period, we let ĝaa(x) = ∞. The same

convention is used for ĝav, ĝva, and ĝvv, and hence they are well defined over [0, 1
1−δ ]. Note

that ĝ(x) = min
(
ĝaa(x), ĝav(x), ĝva(x), ĝvv(x)

)
.

Our goal is to prove that ĝ(x) = ĝaa(x). We will bound ĝaa(x) (Step 1), calculate ĝav(x)

(Step 2), and show that ĝav(x) > ĝaa(x) (Step 3). In Step 4 we show that ĝvv(x) ≥ ĝaa(x),

and in Step 5 we verify that ĝva(x) > ĝaa(x).

Step 1: Bounding ĝaa(x).

Consider the strategy profile σ̂ that is defined in Proposition 8. We already argued that

σ̂ is a PPE. By definition, ĝaa(x) ≤ v2(σ̂). By construction, σ̂ yields Agent 1 the payoff x

and Agent 2 the payoff

ĝaa(x) ≤ v2(σ̂) = 0 + δ ·
(
p1 · g

(
f(p1)

)
+ (1− p1) · f(1− p1)

)
, (25)

where p1 = w−1(x
δ
). We now argue that p1 ∈ ( c

1+c
, 1
1+c

), and we will use this fact in Step 3.

Since x ∈ (0, 1−c2
1+c−δ ) and by Lemma 4, we have ĝ(x) > 0. Therefore, v2(σ̂) ≥ ĝaa(x) ≥ ĝ(x) >

0, and the expected payoffs of the two agents under σ̂ are both positive. Since v1(σ̂) = δw(p1)

and v2(σ̂) = δw(1 − p1) (see Eqs. (20)–(21)), we have w(p1) > 0 and w(1 − p1) > 0. Since

w(p) is decreasing in p and since w( 1
1+c

) = 0, we have p1 <
1

1+c
and 1− p1 < 1

1+c
, and hence

p1 ∈ ( c
1+c

, 1
1+c

).

Step 2: Calculating ĝav(x).

Let σ = (σ0, σ1, σ2) be a PPE in E nc
∗ under which Agent 1 adheres in the first period

and Agent 2 violates in the first period. By the definition of E nc
∗ , Agent 2 is inspected with

probability 0 in the first period. Let σ0(I1) be the inspection probability for Agent 1 in the

first period. As in the proof of Proposition 2(ii), we can assume without loss of generality

that σ0(I1) = 1.

Suppose then that Agent 1 is inspected with probability 1 in the first period. Then in

the first period Agent 1 obtains zero and Agent 2 obtains 1. From the next period and on,

Agent 1 obtains a payoff x
δ
, and consequently, Agent 2’s payoff is at least g

(
x
δ

)
. Since the

players can implement the payoffs
(
v1 = x

δ
, v2 = g(x

δ
)
)
, it follows that

ĝav(x) = 1 + δ · g
(x
δ

)
. (26)

Step 3: ĝaa(x) < ĝav(x).
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By Eqs. (26), (25), and (20),

ĝav(x)− ĝaa(x) ≥ ĝav(x)− v2(σ̂) = 1+δ · g
(x
δ

)
− δ ·

(
p1 · g

(
f(p1)

)
+ (1− p1) · f(1− p1)

)
= 1+δ · g

(
p1 · f(p1) + (1− p1) · g

(
f(1− p1)

))
−δ ·

(
p1 · g

(
f(p1)

)
+ (1− p1) · f(1− p1)

)
= 1−δ · Z,

(27)

where

Z := p1 · g
(
f(p1)

)
+ (1− p1) · f(1− p1)− g

(
p1 · f(p1) + (1− p1) · g

(
f(1− p1)

))
. (28)

We will show that Z < 1
δ
, which implies that ĝav(x) > ĝaa(x). By Eq. (19), and since

p1 ∈ ( c
1+c

, 1
1+c

) by Step 1, we have

f(p1) ≥ p1 · f(p1) + (1− p1) · g
(
f(1− p1)

)
.

By Proposition 7(i) the function g is non-increasing, which, together with the fact that

p1 < 1, implies that

p1 · g
(
f(p1)

)
< g
(
f(p1)

)
≤ g
(
p1 · f(p1) + (1− p1) · g

(
f(1− p1)

))
. (29)

By Eqs. (28), (29), and (6),

Z = p1 · g
(
f(p1)

)
+ (1− p1) · f(1− p1)− g

(
p1 · f(p1) + (1− p1) · g

(
f(1− p1)

))
< (1− p1) · f(1− p1) =

1

δ
− (1 + c)(1− p1)

δ
<

1

δ
,

(30)

as claimed.

Step 4: ĝvv(x) ≥ ĝav(x).

Let σ = (σ0, σ1, σ2) be a PPE in E nc
∗ that implements the payoff (v1 = x, v2 = ĝvv(x)),

under which both agents violate in the first period. By the definition of E nc
∗ , both agents are

inspected with probability 0 in the first period. Denote y := ĝvv(x). In the first period both

agents gain 1, and therefore the agents’ continuation payoffs are x−1
δ

and y−1
δ

, respectively.

When Agent 1’s payoff is x−1
δ

, the lowest PPE payoff of Agent 2 is g(x−1
δ

). The definition of
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ĝvv(x) implies that y−1
δ

= g(x−1
δ

). It follows that ĝvv(x) = y = 1+δ ·g(x−1
δ

). By Eq. (26) and

since the function g is non-increasing, we have ĝav(x) = 1+δ ·g
(
x
δ

)
≤ 1+δ ·g(x−1

δ
) = ĝvv(x),

as claimed.

Step 5: ĝ(x) = ĝaa(x).

By Steps 1–4, we have ĝ(x) = min
(
ĝaa(x), ĝva(x)

)
. To prove that ĝ(x) = ĝaa(x), we

consider two cases, depending on whether x = ĝ
(
ĝ(x)

)
or not.

Denote by X the set of x ∈ (0, 1−c2
1+c−δ ) that satisfies x = ĝ

(
ĝ(x)

)
. Let x ∈ X and let

y := ĝ(x). Since x = ĝ(ĝ(x)), we have x = ĝ(y). Since x ∈ (0, 1−c2
1+c−δ ) and by Lemma 4, we

have y ∈ (0, 1−c2
1+c−δ ). The payoff vector

(
x, ĝ(x)

)
can therefore be written as

(
ĝ(y), y

)
, with

y ∈ (0, 1−c2
1+c−δ ). By reversing the roles of the two agents and by the arguments given in Steps

1–3, we have ĝva(y) > ĝaa(y). Let Y be the set of all ĝ(x) where x ∈ X . The above argument

implies that for every x ∈ Y , we have ĝva(x) > ĝaa(x), and hence ĝ(x) = ĝaa(x).

We now argue that if x ∈ X , then necessarily x ∈ Y . This result, together with the

previous argument, will imply that ĝ(x) = ĝaa(x) for every x ∈ X . Let x ∈ X . By definition,

we have x = ĝ
(
ĝ(x)

)
. Let y := ĝ(x). Then (i) x = ĝ(y), and (ii) y = ĝ(x) = ĝ

(
ĝ(y)

)
so that

y ∈ X . Therefore, x ∈ Y , as claimed.

Consider next the case x /∈ X . By the definition of ĝ and since (v1 = x, v2 = ĝ(x)) can

be supported as a PPE outcome, we have x ≥ ĝ
(
ĝ(x)

)
. Since x /∈ X , we have x > ĝ

(
ĝ(x)

)
.

We will prove that
(
v1 = ĝ

(
ĝ(x)

)
, v2 = ĝ(x)

)
can be supported as a PPE outcome in E nc

∗ in

which both agents adhere in the first period. Since x ∈
(
ĝ
(
ĝ(x)

)
, 1−c2
1+c−δ

)
, by Lemma 3 and

its proof, this will imply that the payoff vector (v1 = x, v2 = ĝ(x)) can also be supported as

a PPE outcome in E nc
∗ in which both agents adhere in the first period, and therefore we will

obtain that ĝ(x) = ĝaa(x).

Denote y := ĝ(x). By the definition of ĝ, we have ĝ(y) ≤ x. Since ĝ is non-increasing, we

have ĝ
(
ĝ(y)

)
≥ ĝ(x) = y. Since (v1 = y, v2 = ĝ(y)) can be supported as a PPE in E nc

∗ , we

have ĝ
(
ĝ(y)

)
≤ y, and therefore ĝ

(
ĝ(y)

)
= y. By the previous argument, the payoff vector

(v1 = y, v2 = ĝ(y)) can be supported as a PPE outcome in which both agents adhere in the

first period. By reversing the roles of the two agents, we conclude that there exists a PPE

that implements
(
v1 = ĝ

(
ĝ(x)

)
, v2 = ĝ(x)

)
where both agents adhere in the first period, as

desired.

Lemma 6. Let x ∈ (0, 1−c2
1+c−δ ) and suppose that σ ∈ E nc

∗ is a PPE that implements (v1 =

x, v2 = ĝ(x)). Then without loss of generality we can assume that the principal is not idle in

the first period, that is, σ0(∅) = 0.

Proof. Suppose that there exists a PPE σ = (σ0, σ1, σ2) under which v1(σ) = x, v2(σ) = ĝ(x),
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and σ0(I1) + σ0(I2) < 1. Denote p1 := σ0(I1) and p2 := σ0(I2). Figure 8 describes the first

period under σ.

Figure 8: The first period under σ. Figure 9: The first period under σ′

We will show that there is another PPE σ′ = (σ′0, σ
′
1, σ

′
2) that yields the principal the

same payoff and satisfies σ′0(∅) = 0. The structure of the proof is similar to Step 2 in the

proof of Lemma 5, yet additional effort is needed to show that adhering is the best response

of Agent 1 in the first period under σ′. Let σ′ = (σ′0, σ
′
1, σ

′
2) be the strategy profile that is

similar to σ except for the following modifications (see Figure 9):

(i) In the first period the principal inspects Agent 1 with probability 1 − p2 and Agent 2

with probability p2. Both agents adhere.

(ii) If Agent 1 is inspected in the first period and found adhering, the players implement the

PPE that yields v1(σ
′|A1) = p1

1−p2v1(σ|A1) + 1−p1−p2
1−p2 v1(σ|∅) and v2(σ

′|A1) = g
(
v1(σ

′|A1)
)
.

We now verify that σ′ is a PPE. For Agent 2, the probability of being inspected in period

1 and the continuation payoff if being found adhering are the same under σ′ and σ. Therefore,

by Proposition 4, Agent 2 chooses the same action (Adhere) in the first period under σ′ and

σ. It is left to verify that adhering is Agent 1’s best response in the first period of σ′. By

the definition of σ′,

σ′0(I1) · v1(σ′|A1) =
(
σ0(I1) + σ0(∅)

)
· v1(σ′|A1) = σ0(I1)

≥f
(
σ0(I1)

)︷ ︸︸ ︷
v1(σ|A1) +σ0(∅)v1(σ|∅)

≥ σ0(I1) · f
(
σ0(I1)

)
> σ′0(I1) · f

(
σ′0(I1)

)
.

(31)

Indeed, since σ is a PPE in E nc
∗ , by Lemma 5 Agent 1 adheres in the first period, and hence

v1(σ|A1) ≥ f
(
σ0(I1)

)
. The last inequality in Eq. (31) holds since p · f(p) is decreasing in p

and since σ0(I1) < σ′0(I1). Further, since σ0(I1) is non-negative, σ′0(I1) > 0 and hence by

Eq. (31), we have v1(σ
′|A1) > f

(
σ′0(I1)

)
. Proposition 4 now implies that Agent 1 is better
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off adhering in the first period of σ′.

Agent 1’s payoff under σ′ is v1(σ
′) = v1(σ) = x, while Agent 2’s payoff under σ′ is

v2(σ
′) = 0 + δ ·

(
(1− p2) ·

=g
(
v1(σ′|A1

)
)︷ ︸︸ ︷

v2(σ
′|A1) +p2 · v2(σ′|A2)

)
.

(32)

By the definition of σ′ and the convexity of g (Proposition 7(ii)), we have

v2(σ
′|A1) = g

(
v1(σ

′|A1)
)

= g
(

p1
1−p2v1(σ|A1) + 1−p1−p2

1−p2 v1(σ|∅)
)
≤ p1

1−p2 g
(
v1(σ|A1)

)
+ 1−p1−p2

1−p2 g
(
v1(σ|∅)

)
.

(33)

Since σ′ is a PPE in E nc
∗ , and by Eqs. (32) and (33),

ĝ(x) ≤ v2(σ
′) ≤ δ ·

(
p1 · g

(
v1(σ|A1)

)
+ (1− p1 − p2) · g

(
v1(σ|∅)

)
+ p2 · v2(σ|A2)

)
= v2(σ) = ĝ(x).

(34)

Hence v2(σ
′) = v2(σ), and therefore σ′ satisfies the desired properties.

Let x ∈ (0, 1−c2
1+c−δ ) and let σ ∈ E nc

∗ be a PPE that implements (v1 = x, v2 = ĝ(x))

and where the principal is not idle in the first period. Denote p1 := σ0(I1), it follows that

σ0(I2) = 1− p1. By Lemma 5, both agents adhere in the first period under σ, hence p1 > 0

and 1−p1 > 0. Let A := v1(σ|A1), B := v2(σ|A1), C := v1(σ|A2), and D := v2(σ|A2). The first

period under σ is summarized in Figure 10. By Proposition 4, A ≥ f(p1) and D ≥ f(1−p1).

Figure 10: The first period under σ.

Proposition 7(v) states that g
(
g(x)

)
= x for every x ∈ (0, 1−c2

1+c−δ ). We now prove that the

analogous property holds for the function ĝ.

Lemma 7. For every x ∈ (0, 1−c2
1+c−δ ), we have ĝ

(
ĝ(x)

)
= x.

Proof. Step 1: The lemma holds if ĝ is continuous on (0, 1−c2
1+c−δ ).
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Suppose that ĝ is continuous on (0, 1−c2
1+c−δ ) and let x ∈ (0, 1−c2

1+c−δ ). Since (v1 = x, v2 = ĝ(x))

can be implemented by a PPE in E nc
∗ , we have ĝ

(
ĝ(x)

)
≤ x. Suppose by contradiction that

ĝ
(
ĝ(x)

)
< x. If ĝ(x) = 0, then by Lemma 4(ii), ĝ (ĝ(x)) = 1−c2

1+c−δ ≥ x, a contradiction. Hence

ĝ(x) > 0. Since ĝ is non-increasing, since ĝ(0) > x > ĝ
(
ĝ(x)

)
, and since by assumption ĝ is

continuous on (0, 1−c2
1+c−δ ), there exists 0 < y < ĝ(x) such that ĝ(y) = x. This implies that

(v1 = x, v2 = y) can be implemented by a PPE in E nc
∗ , contradicting the definition of ĝ at

x. Therefore, it is sufficient to prove that ĝ is continuous on (0, 1−c2
1+c−δ ).

Step 2: For every x ∈ (0, 1−c2
1+c−δ ) there exists a PPE σ in E nc

∗ that implements (v1 =

x, v2 = ĝ(x)) and satisfies in addition c
1+c
≤ σ0(I1), σ0(I2) ≤ 1

1+c
.

Let σ be a PPE in E nc
∗ that satisfies Lemma 6 and implements the payoffs (v1 = x, v2 =

ĝ(x)). Denote by p1 := σ0(I1) the inspection probability for Agent 1 in the first period

under σ (see Figure 10). We will show that we can assume without loss of generality that

p1 ∈ [ c
1+c

, 1
1+c

]. Since under σ the principal is not idle in the first period, this implies that

the inspection probability for Agent 2, σ0(I2), is in [ c
1+c

, 1
1+c

] as well.

Suppose that one of the agents is inspected with probability lower than c
1+c

. Without loss

of generality, suppose p1 <
c

1+c
, and hence 1−p1 > 1

1+c
. Define an alternative PPE, σ̂, where

we set the inspection probability for Agent 2 to 1
1+c

, and assign the remaining probability

(1−p1− 1
1+c

) to no inspection. Under σ̂, the continuation payoff if no one is inspected is the

same as the continuation payoff if Agent 2 is inspected and found adhering (see Figure 11).

Since Agent 2 is inspected with probability 1
1+c

in the first period under σ̂, by Proposition 4

and Eq. (6), Agent 2 adheres in the first period. The reader can verify that σ̂ is a PPE that

implements the payoffs
(
v1(σ̂) = x, v2(σ̂) = ĝ(x)

)
. Note that σ̂ /∈ E nc

∗ .

Figure 11: The first period under σ̂. Figure 12: The first period under σ′.

Now we construct an alternative PPE in E nc
∗ , denoted σ′, by adding the probability for

no inspection under σ̂ to the inspection of Agent 1 (see Figure 12). Under σ′, if Agent 1 is in-

spected, the players implement the PPE that yields Agent 1 the payoff A′ :=
p1A+

(
c

1+c
−p1
)
C

c
1+c

47



and Agent 2 the payoff g(A′). Using the same argument as in the proof of Lemma 6, σ′

is a PPE in E nc
∗ where both agents adhere in the first period and implements the payoffs

(v1(σ
′) = x, v2(σ

′) = ĝ(x)).

Step 3: The function ĝ is continuous on [0, 1−c2
1+c−δ ].

Let X := [0, 1−c2
1+c−δ ] and W ⊂ [0, 1] × [0, 1

1−δ ]
4. Let G : X � W be the compact-valued

correspondence defined by

G(x) :=
{

(p1, A,B,C,D) : δ ·
(
p1A+ (1− p1)C

)
= x,

f(p1) ≤ A ≤ 1

1− δ
,

g(A) ≤ B ≤ 1

1− δ
,

0 ≤ C ≤ 1

1− δ

max
(
f(1− p1), g(C)

)
≤ D ≤ 1

1− δ
,

c

1 + c
≤ p1 ≤

1

1 + c

}
.

(35)

A tuple (p1, A,B,C,D) that is in G(x) can define a strategy profile in which both agents

adhere in the first period and where the payoff to Agent 1 is x. Indeed, p1 (resp. (1 − p1))
represents the inspection probability for Agent 1 (resp. Agent 2) and A,B,C,D are the

continuation payoffs as described in Figure 10. The first condition in the definition of G(x)

implies that the expected payoff of Agent 1 is x; the second and the third conditions imply

that it is optimal for Agent 1 to adhere in the first period and the payoffs (v1 = A, v2 = B)

can be supported as a PPE outcome; the forth and the fifth conditions imply that it is

optimal for Agent 2 to adhere in the first period and the payoffs (v1 = C, v2 = D) can be

supported as a PPE outcome; the sixth condition requires that the inspection probability

for Agent 1 is in [ c
1+c

, 1
1+c

], which is made without loss of generality as shown in Step 2.

For every x ∈ X, the set G(x) is not empty. Indeed, it can be verified that the tuple

(p̂1, Â, B̂, Ĉ, D̂) defined by p̂1 := w−1(x
δ
), Â := f(p̂1), B̂ := g(f(p̂1)), Ĉ := g(f(1− p̂1)), and

D̂ := f(1− p̂1), where the function w is defined in Eq. (8), lies in G(x).

Denote by h : W → R the continuous function

h(

v∈W︷ ︸︸ ︷
p1, A,B,C,D) := δ ·

(
p1B + (1− p1)D

)
. (36)
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This is Agent 2’s expected payoff under the strategy profile that is defined by the tuple

(p1, A,B,C,D). Then, for every x ∈ X, we have

ĝ(x) = min
(
h(v)|v ∈ G(x)

)
. (37)

By Berge’s Maximum Theorem, to prove that the function ĝ is continuous on [0, 1−c2
1+c−δ ],

it is sufficient to prove that the correspondence G is continuous, i.e., both upper and lower

hemicontinuous, on [0, 1−c2
1+c−δ ].

The upper hemicontinuity of G follows from the continuity of f and g. We now turn to

proving that G is lower hemicontinuous: for every x ∈ X, every v ∈ G(x), and every sequence

xn → x, there exist N ≥ 1 and a sequence {vn}n∈N such that vn → v and vn ∈ G(xn) for

every n ≥ N . Fix v = (p1, A,B,C,D) ∈ G(x), x ∈ X, and a sequence (xn)n∈N in X that

converges to x.

Case 1: 0 < C < 1
1−δ .

For every n ≥ 1, define vn := (pn1 , An, Bn, Cn, Dn) by pn1 := p1, An := A, Bn := B,

Cn := C − x−xn
δ(1−p1) , and Dn := max

(
g(Cn), D

)
. Since the function g is continuous, we have

vn → v. When xn is sufficiently close to x, the quantity Cn is sufficiently close to C, and

therefore Cn ∈ (0, 1
1−δ ). If follows that g(Cn) < g(0) = 1−c2

1+c−δ <
1

1−δ , and vn ∈ G(xn).

Case 2: C = 0 and A = f(p1).

For every n ≥ 1, define vn := (pn1 , An, Bn, Cn, Dn) as follows. (i) If xn > x, then pn1 := p1,

An := A, Bn = B, Cn = xn−x
δ(1−p1) , and Dn := max

(
g(Cn), D

)
= D, while (ii) if xn < x,

then pn1 := p1 + x−xn
1+c

, An := f(pn1 ), Bn := max
(
g(An), B

)
, Cn := C = 0, and Dn :=

max
(
f(1− pn1 ), D

)
. Because of the continuity of the functions f and g, we have vn → v. It

can be verified that δ ·
(
pn1An + (1− pn1 ) ·Cn

)
= xn, and hence the first condition in Eq. (35)

holds for xn and vn. We now verify that pn1 ∈ [ c
1+c

, 1
1+c

]. By construction, pn1 ≥ p1 ≥ c
1+c

.

Since x > 0 and C = 0, we have A = f(p1) > 0 and hence p1 <
1

1+c
. Therefore, when xn is

sufficiently close to x, we have pn1 <
1

1+c
, as desired. It follows that for such n, An, Bn, Cn

and Dn are in the proper range and we have vn ∈ G(xn).

Case 3: C = 0 and A > f(p1).

For every n ≥ 1, define vn := (pn1 , An, Bn, Cn, Dn) as follows. (i) If xn > x, then pn1 := p1,

An := A, Bn = B, Cn = xn−x
δ(1−p1) , and Dn := D, while (ii) if xn < x, then pn1 := p1,

An := A − x−xn
δp1

, Bn := g(An), Cn := C = 0, and Dn := D. Since the function g is

continuous, we have vn → v. As in Case 2, it can be verified that δ ·
(
pn1An + (1− pn1 ) · 0

)
=

xn. For xn sufficiently close to x, we have that An is sufficiently close to A, and hence

An > f(pn1 ) = f(p1). It can then be verified that for such n, we have vn ∈ G(xn).

49



Case 4: C = 1
1−δ .

We first argue that A < 1
1−δ . Indeed, since x = p1δA + (1 − p1)δC ≤ 1−c2

1+c−δ and since

δC = δ
1−δ > 1−c2

1+c−δ (see Assumption 2), we have δA < 1−c2
1+c−δ < δ

1−δ , as claimed. For

every n ≥ 1, define vn := (pn1 , An, Bn, Cn, Dn) as follows. (i) If xn > x, then pn1 := p1,

An := A + xn−x
δp1

, Bn = max
(
g(An), B

)
= B, Cn = C, and Dn := D, while (ii) if xn < x,

then pn1 := p1, An := A, Bn := B, Cn := C − x−xn
δ(1−p1) , and Dn := max

(
g(Cn), D

)
. It can be

verified that xn = δ
(
p1An+(1−p1)Cn

)
. When xn is sufficiently close to x, we have An <

1
1−δ

and g(Cn) = g( 1−c2
1+c−δ ) = 0. It follows that for such n, we have vn ∈ G(xn). This completes

the proof that the correspondence G is lower hemicontinuous.

For x ∈ (0, 1−c2
1+c−δ ), let σ∗ ∈ E nc

∗ be the PPE that implements the payoffs (v1 = x, v2 =

ĝ(x)) and satisfies the properties stated in Lemmas 5–7 (see Figure 13). One can expect

that B = g(A) and C = g(D). This is the content of the next lemma.

Figure 13: The first period under σ∗.

Lemma 8. B = g(A) and C = g(D).

Proof. By the definition of g, we have B ≥ g(A) and C ≥ g(D). Assume first that B > g(A).

Consider the strategy profile σ′ under which σ′0(I1) = p1, σ
′
0(I2) = 1 − p1, v1(σ

′|A1) = A,

v2(σ
′|A1) = g(A), v1(σ

′|A2) = C, and v2(σ
′|A2) = D, and both agents adhere in the first

period. That is, if Agent 1 is inspected in the first period the players implement the PPE

that supports the payoffs (A, g(A)), and if Agent 2 is inspected in the first period the players

implement the PPE that supports the payoffs (C,D).

Since A ≥ f(p1) and D ≥ f(1 − p1), the strategy profile σ′ is a PPE in E nc
∗ . Agent 1’s

payoff under σ′ is

v1(σ
′) = δ ·

(
p1 · A+ (1− p1) · C

)
= x,
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and Agent 2’s payoff is

v2(σ
′) = δ ·

(
p1 · g(A) + (1− p1) ·D

)
< ĝ(x),

contradicting the definition of ĝ(x). This implies that B = g(A). By Lemma 7, we have

ĝ
(
ĝ(x)

)
= x, hence an analogous argument shows that C = g(D).

Lemma 9. A = f(p1) and D = f(1− p1).

Proof. We only prove that A = f(p1). The proof that D = f(1− p1) is analogous.

Step 1: If 1−c2
1+c−δ < A ≤ 1

1−δ then A = f(p1).

By Proposition 7(i,iii), in this case g(A) = 0. The structure of σ∗ in the first period is

summarized in Figure 14.

Figure 14: The first period under σ∗. Figure 15: The first period under σ̂.

Suppose to the contrary that A > f(p1). Since f is decreasing, there exists p′ < p1 such

that f(p′) = A. Consider the following strategy profile σ̂ = (σ̂0, σ̂1, σ̂2) (see Figure 15):

(i) σ̂0(I1) = p′, σ̂0(∅) = p1 − p′, and σ̂0(I2) = 1− p1: in the first period the principal reduces

the inspection probability for Agent 1 from p1 to p′, and increases the probability of “no

inspection” from 0 to p1 − p′. Both agents adhere.

(ii) σ̂|A1 = σ∗|A1 and σ̂|A2 = σ∗|A2 . The continuation play in the eventuality that one of the

agents is inspected in the first period is the same under σ̂ and under σ∗.

(iii) v1(σ̂|∅) = 1−c2
1+c−δ and v0(σ̂|∅) = 0: if no agent is inspected in the first period, the players

implement the PPE that yields Agent 1 the payoff 1−c2
1+c−δ and Agent 2 the payoff 0. Section 3.4

guarantees the existence of such an inspection strategy. Note that by assumption 1−c2
1+c−δ < A.

Since A = f(p′) and D ≥ f(1 − p1), by Proposition 4 it is optimal for both agents to

adhere in the first period, and hence σ̂ is a PPE in E nc
∗ . Agent 2’s payoff under σ̂ is

v2(σ̂) = 0 + δ
(
p1 · 0 + (1− p1) ·D

)
= ĝ(x), (38)
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and Agent 1’s payoff under σ̂ is

v1(σ̂) = 0 + δ
(
p′ · A+ (p1 − p′) ·

1− c2

1 + c− δ
+ (1− p1) · g(D)

)
< 0 + δ

(
p1 · A+ (1− p1) · g(D)

)
= x,

(39)

where the inequality holds because A > 1−c2
1+c−δ . Thus, the payoffs (v1 = v1(σ̂), v2 = ĝ(x))

is implemented by a PPE in E nc
∗ , and therefore x = ĝ

(
ĝ(x)

)
≤ v1(σ̂) < x, a contradiction.

This contradiction implies that if 1−c2
1+c−δ < A ≤ 1

1−δ , then A = f(p1).

We now study the case A ≤ 1−c2
1+c−δ . We first prove a technical result.

Step 2: Suppose that g(B) ∈
(

0, 1−c2
1+c−δ

]
. Then

p · g(B) + (1− p) · g(D) > g
(
p ·B + (1− p) ·D

)
, ∀p ∈ (0, 1). (40)

Since g is convex, Eq. (40) holds with weak inequality. In this step we show that the

inequality is in fact strict. By construction (as shown in Figure 17),

x = δ ·
(
p1 · g(B) + (1− p1) · g(D)

)
, (41)

ĝ(x) = δ ·
(
p1 ·B + (1− p1) ·D

)
. (42)

Since g
(
ĝ(x)

)
≤ ĝ
(
ĝ(x)

)
= x, by Eqs. (41)–(42), we have

g
(
δ ·
(
p1 ·B + (1− p1) ·D

))
≤ δ ·

(
p1 · g(B) + (1− p1) · g(D)

)
. (43)

Since x > 0, we have δx < x, that is,

δ ·
(
p1 · g(B) + (1− p1) · g(D)

)
< p1 · g(B) + (1− p1) · g(D). (44)

Since g is non-increasing, we deduce that

g
(
p1 ·B + (1− p1) ·D

)
≤ g
(
δ ·
(
p1 ·B + (1− p1) ·D

))
. (45)

By Eqs. (43)–(45),

g
(
p1 ·B + (1− p1) ·D

)
< p1 · g(B) + (1− p1) · g(D). (46)
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Since g is (weakly) convex and since there exists p1 ∈ (0, 1) such that Eq. (46) holds, we

have p · g(B) + (1 − p) · g(D) > g
(
p · B + (1 − p) ·D

)
for every p ∈ (0, 1). Indeed, if there

were p2 ∈ (0, 1) such that g
(
p2 ·B + (1− p2) ·D

)
= p2 · g(B) + (1− p2) · g(D), then g would

not be convex. Denote Z1 := p1 ·B + (1− p1) ·D. If, for example, p1 < p2 < 1, then the line

between (Z1, g(Z1)) and (D, g(D)) does not pass above the graph of g (see Figure 16 for an

illustration).

Figure 16: The inequality (40) holds for every p ∈ (0, 1).

Step 3: If A ≤ 1−c2
1+c−δ , then A = f(p1).

Since A ≤ 1−c2
1+c−δ and by Lemma 8, we have B = g(A) ≤ 1−c2

1+c−δ . By Proposition 7(v), we

have A = g
(
g(A)

)
= g(B). The play in the first period under σ∗ is depicted in Figure 17.

Figure 17: The first period under σ∗.

We are now ready to show that A = f(p1). Suppose to the contrary that g(B) = A >
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f(p1). Since f is decreasing, continuous, and satisfies limp↘0 f(p) =∞, there exists p′ < p1

such that f(p′) = g(B).

Consider an alternative PPE, σ̃, where we set the inspection probability for Agent 1 to p′,

and the remaining probability we assign to no inspection (see Figure 18). Since g(B) = f(p′)

and D ≥ f(1 − p1), by Proposition 4 both agents adhere in the first period under σ̃. The

reader can verify that σ̃ is a PPE in E nc
∗ that yields the payoffs v1(σ̃) = x and v2(σ̃) = ĝ(x).

Figure 18: The first period under σ̃. Figure 19: The first period under σ′.

We next construct a new PPE in E nc
∗ , denoted σ′, by adding the probability for no

inspection under σ̃ to the inspection of Agent 2 (see Figure 19). Under σ′, if Agent 2 is

inspected, the players implement the PPE that yields Agent 2 the payoff D′ := p1−p′
1−p′ · B +

1−p1
1−p′ ·D and Agent 1 the payoff g(D′).

Using the same argument as in the proof of Lemma 6, σ′ is a PPE in E nc
∗ where both

agents adhere in the first period, and v2(σ
′) = v2(σ̃) = ĝ(x). Because of the strict convexity

of g shown in Step 2, we have

g(D′) <
p1 − p′

1− p′
· g(B) +

1− p1
1− p′

· g(D), (47)

and hence,

v1(σ
′) < δ ·

(
p′ · g(B) + (p1 − p′) · g(B) + (1− p1) · g(D)

)
= x. (48)

Since (v1 = v1(σ
′), v2 = ĝ(x)) can be implemented by a PPE in E nc

∗ , the inequality (48)

contradicts x = ĝ
(
ĝ(x)

)
. This completes the proof that if A ≤ 1−c2

1+c−δ , then A = f(p1).

A.7.2 Proof of Proposition 9

In this section we prove that the one-stage optimal operator θ is convex. We will first define

a family G of functions that contains the function g (Definition 2). We will then study for
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every h ∈ G the one-stage operator θh that is defined by the right-hand side of Eq. (24),

where w is defined by h instead of g. We will next prove that if the function h ∈ G is

twice differentiable, then θh is convex (Lemma 10). Finally, we will drop the differentiability

constraint on h and prove that if h ∈ G , then θh is convex (Lemma 11).

Definition 2. Let G be the set of functions h : [0,∞) → [0,∞) that satisfy the following

conditions: (i) h is continuous and non-increasing, (ii) h is convex, (iii) h(x) = 0 for every

x ≥ 1−c2
1+c−δ , and (iv) h(0) ≤ 1−c2

1+c−δ .

By Proposition 7, the function g is in G . For every h ∈ G , let wh(p) : [0, 1]→ [0,∞) be

the function defined as follows:

wh(p) :=

{
p · f(p) + (1− p) · h

(
f(1− p)

)
if 0 < p ≤ 1,

1
δ

+ h(0) if p = 0.
(49)

As argued before, the function wh is continuous at p = 0, and strictly decreasing on [0, 1
1+c

].

Therefore, the minimal value of wh(p) on [0, 1
1+c

] is achieved at p = 1
1+c

. By Assumption 2,

f( c
1+c

) > 1−c2
1+c−δ , hence, by the definition of G , we have h(f( c

1+c
)) = 0. By Eq. (6), f( 1

1+c
) = 0,

hence the minimal value of wh(p) on [0, 1
1+c

] is wh(
1

1+c
) = 0. Therefore, the inverse function

of wh(p) for p ∈ [0, 1
1+c

], denoted w−1h (x) : [0, wh(0)] → [0, 1
1+c

], is well defined and strictly

decreasing.

Denote by θh(x) : [0,∞]→ [0,∞) the function

θh(x) :=

{
ϕh(x) if 0 ≤ x ≤ δwh(0),

0 if x > δwh(0),
(50)

where ϕh(x) : [0, δwh(0)]→ [0,∞) is defined by

ϕh(x) := δ · wh
(

1− w−1h
(x
δ

))
. (51)

One can view θh as the one-stage optimal operator; that is, the lowest payoff to Agent

2 in PPEs that yield Agent 1 the payoff x, if the continuation payoffs of the agents from

the second period and on is given by h. Since wh is continuous at p = 0, and since both

f and h are continuous, the function wh is continuous on [0, 1
1+c

]. This implies that the

inverse function w−1h is continuous on [0, wh(0)], and therefore the function ϕh is continuous

on [0, δwh(0)]. Since w−1h is strictly decreasing on [0, wh(0)], the function 1− w−1h is strictly

increasing on [1−wh(0), 1], hence the composition wh
(
1− w−1h

(
x
δ

))
is strictly decreasing on

[0, δwh(0)]. Since ϕh
(
δwh(0)

)
= 0, the function θh(x) is continuous and non-increasing on
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[0,∞).

Lemma 10. If the function h ∈ G is twice differentiable, then θh ∈ G .

Proof. Step 1: The function w−1h is convex.

Since h is twice differentiable, and since f(p) is twice differentiable on [0, 1
1+c

], by Eq. (49),

the function wh is twice differentiable on [0, 1
1+c

]. This implies that the function w−1h is twice

differentiable on [0, wh(0)]. For every x ∈
(
0, wh(0)

)
, we have

(w−1h )′′(x) =
−w′′h

(
w−1h (x)

)
· (w−1h )′(x)(

w′h
(
w−1h (x)

))2 ≥ 0. (52)

Consequently, the function w−1h is convex.

Step 2: The function θh is convex.

Define the function ph : [0, δwh(0)]→ [0, 1
1+c

] by ph(x) := w−1h (x
δ
) for every x ∈ [0, δwh(0)].

Since w−1h is strictly decreasing and convex on [0, wh(0)], it follows that ph is strictly decreas-

ing and convex on [0, δwh(0)]. By Eqs. (49) and (51), and by the definition of ph and f , for

every x ∈ [0, δwh(0)], we have

ϕh(x) = δ · (1− ph(x)) · f
(
1− ph(x)

)
+ δ · ph(x) · h

(
f(ph(x))

)
= 1− (1 + c) · (1− ph(x))︸ ︷︷ ︸

part E

+δ · ph(x) · h
(
f(ph(x))

)︸ ︷︷ ︸
part F

. (53)

Since ph(x) is convex, Part E is convex. We argue that Part F is convex. For every x ∈(
0, δwh(0)

)
,

∂2
(
ph(x) · h

(
f(ph(x))

))
∂2x

=p′′h(x) · h
(
f(ph(x))

)
+ 2 · h′

(
f(ph(x))

)
· f ′(ph(x)) · (p′h(x))2︸ ︷︷ ︸
part G

+ ph(x) · h′′
(
f(ph(x))

)
·
(
f ′(ph(x)) · p′h(x)

)2
+ ph(x) · h′

(
f(ph(x))

)
· f ′′(ph(x)) · (p′h(x))2︸ ︷︷ ︸

part H ≤0

+ ph(x) · h′
(
f(ph(x))

)
· f ′(ph(x)) · p′′h(x).

(54)

Since the functions h and ph are non-negative, the functions h and f are non-increasing,
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and the functions ph and h are convex, except for Part H, all terms in Eq. (54) are non-

negative. By Eq. (6), 2 ·f ′(ph(x)) +ph(x) ·f ′′(ph(x)) = 0. Hence the sum of Part G and Part

H is 0. Therefore, the left-hand-side of Eq. (54) is non-negative, which implies that Part F

in Eq. (53) is convex. By Eq. (50), the function θh is convex on [0,∞).

Step 3: θh(
1−c2
1+c−δ ) = 0 and θh(0) ≤ 1−c2

1+c−δ .

By Eq. (49) and the definition of G , wh(0) = h(0) ≤ 1−c2
1+c−δ . Hence, by Eq. (24),

θh(
1−c2
1+c−δ ) = 0. Finally, since 1 − w−1h (0) = c

1+c
> 0 and since wh is strictly decreasing

on the interval [0, 1
1+c

], we have δ · wh
(
1 − w−1h (0)

)
≤ wh

(
1 − w−1h (0)

)
< wh(0). Therefore,

θh(0) = δ · wh
(
1− w−1h (0)

)
< wh(0) ≤ 1−c2

1+c−δ . This completes the proof of Lemma 10.

The next lemma drops the differentiability constraint on h in Lemma 10.

Lemma 11. If the function h ∈ G , then θh ∈ G .

Proof. We start by showing that θh is convex. To this end, it is sufficient to prove that ϕh is

convex. The idea is to approximate the convex non-differentiable function h by a sequence

of convex C∞-functions (hk)k∈N. By Lemma 10, we will deduce that for every k ∈ N, the

function ϕhk is convex. We will then prove that the sequence (ϕhk)k∈N converges to ϕh, and

therefore ϕh is convex.

Step 1: Approximating h by twice-differentiable functions.

Since the function h ∈ G is convex, for every k ∈ N there exists a convex C∞-function

hk : [0,∞] → [0,∞) such that |hk(x) − h(x)| ≤ 1
k

for every x ∈ [0,∞). This can be done,

for instance, by taking a convolution of h with a smooth non-negative function ξ that is

concentrated around 0 (see, e.g., Rockafellar and Wets, 2009, Theorem 2.26).

Step 2: The sequence of functions (w−1
hk

)k∈N converges uniformly to w−1h .

Observe that

d
(
wh
(
w−1
hk

(y)
)
, wh

(
w−1h (y)

))
= d
(
wh
(
w−1
hk

(y)
)
, y
)

= d
(
wh
(
w−1
hk

(y)
)
, whk

(
w−1
hk

(y)
))
.

(55)

Since the sequence (hk)k∈N converges uniformly to h, the sequence (whk)k∈N converges uni-

formly to wh. Therefore by Eq. (55), the sequence
(
wh(w

−1
hk

)
)
k∈N converges uniformly to

wh(w
−1
h ).
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Since the function h is continuous on [0, 1−c2
1+c−δ ] and since h(x) = 0 for every x ≥ 1−c2

1+c−δ , the

function h is uniformly continuous on [0,∞). This implies that the function wh is uniformly

continuous. Since the function w−1h is continuous on [0, wh(0)], it is uniformly continuous

on [0, wh(0)]. Therefore, as
(
wh(w

−1
hk

)
)
k∈N converges uniformly to wh(w

−1
h ), the sequence(

w−1
hk

)
k∈N converges uniformly to w−1h , as desired.

Step 3: The sequence (ϕhk)k∈N converges uniformly to ϕh.

By the triangle inequality and by Eq. (51),

d
(
ϕhk(x), ϕh(x)

)
≤δ ·

part I︷ ︸︸ ︷
d
(
whk
(
1− w−1

hk
(x
δ
)
)
, whk

(
1− w−1h (x

δ
)
))

+ δ ·
︷ ︸︸ ︷
d
(
whk
(
1− w−1h (x

δ
)
)
, wh

(
1− w−1h (x

δ
)
))

part J

.

(56)

By Eq. (49) and since the function hk is uniformly continuous, the function whk is uni-

formly continuous. Since limk→∞w
−1
hk

= w−1h uniformly, Part I goes to 0 uniformly. Since

limk→∞whk = wh, Part J goes to 0 uniformly. Consequently, limk→∞ ϕhk(x) = ϕh(x), as

desired.

Finally, since the sequence (ϕhk)k∈N converges uniformly to ϕh(x), it follows that (θhk)k∈N

converges uniformly to θh. By Lemma 10, θhk( 1−c2
1+c−δ ) = 0 and θhk(0) ≤ 1−c2

1+c−δ for every

k ∈ N. Therefore, θh(
1−c2
1+c−δ ) = limk→∞ θhk( 1−c2

1+c−δ ) = 0 and θh(0) = limk→∞ θhk(0) ≤ 1−c2
1+c−δ .

This completes the proof of Lemma 11, and with it the proof of Proposition 9.

A.7.3 The existence of a minimal solution to Eq. (7), and an algorithm to

approximate it

The notations in this section follow Section A.7.2. We first show that the operator h 7→ θh

is monotone.

Lemma 12. Let h1 and h2 be two functions in G such that h1(x) ≥ h2(x) for every x ∈
[0, 1−c2

1+c−δ ). Then θh1(x) ≥ θh2(x) for every x ∈ [0,∞).

Proof. Since h1 ≥ h2, by Eq. (49), we have wh1(p) ≥ wh2(p) for every p ∈ [0, 1]. Hence, for
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every x ∈ [0, wh2(0)] we have w−1h1 (x) ≥ w−1h2 (x). By Eq. (51) and since wh1 is non-increasing,

θh1(x) = δ · wh1
(
1− w−1h1 (x)

)
≥ δ · wh1

(
1− w−1h2 (x)

)
≥ δ · wh2

(
1− w−1h2 (x)

)
= θh2(x).

(57)

The result follows by Eq. (57) and by observing that for x > wh2(0), we have θh2(x) = 0 and

θh1(x) ≥ 0.

We now provide an iterative procedure that allows us to approximate the minimal solution

to Eq. (7).

Lemma 13. The minimal solution to Eq. (7) exists and is given by limk→∞ gk, where the

sequence (gk)k∈N is defined by g0 := 0 and gk := θgk−1
for every k ≥ 1.

Proof. The function g satisfies Eqs. (7) and (8), hence these equations have at least one

solution. Since g0 ∈ G , by Lemma 11 the function gk is in G for every k ∈ N. Lemma 12

implies that the sequence (gk)k∈N is increasing and bounded above by the minimal solution

to Eq. (7). Therefore, the sequence (gk)k∈N converges pointwise to some function, denoted

g∗. Since the limit of a non-increasing sequence of convex functions is also non-increasing

and convex, and since g∗( 1−c2
1+c−δ ) = 0 and g∗(0) is bounded by 1−c2

1+c−δ , the function g∗ is in G .

Since g∗ is continuous and since (gk)k∈N is a sequence of monotone functions, Dini’s Theorem

ensures that the sequence (gk)k∈N converges uniformly to g∗.

We now prove that the function θgk converges uniformly to θg∗ . Observe that

d
(
wgk
(
1− w−1

gk
(y)
)
, wg∗

(
1− w−1g∗ (y)

))
≤d
(
wgk
(
1− w−1

gk
(y)
)
, wg∗

(
1− w−1

gk
(y)
))

+ d
(
wg∗
(
1− w−1

gk
(y)
)
, wg∗

(
1− w−1g∗ (y)

))
.

(58)

By a similar argument as in the proof of Lemma 11, the sequence (wgk)k∈N converges uni-

formly to wg∗ and the sequence (w−1
gk

)k∈N converges uniformly to w−1g∗ . Since, in addition,

the function wg∗ is uniformly continuous, Eq. (58) implies that the sequence of functions(
wgk
(
1− w−1

gk
(y)
))

k∈N
converges uniformly to wg∗

(
1− w−1g∗ (y)

)
. Therefore, the function θgk

converges uniformly to θg∗ . Consequently, we have θg∗ = g∗, and by Eqs. (50) and (51), the

function g∗ satisfies Eq. (7).

Since any solution to Eq. (7) can be implemented by the PPE described in Proposition

8, Theorem 1 follows from Lemma 13.
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A.8 Proof of Theorem 2

Let σ∗ be an optimal PPE for the principal. We first show that in the first period of σ∗ the

principal inspects each agent with probability 1
2
. Denote by p1 the inspection probability

for Agent 1 in the first period under σ∗. By Eq. (10) and(11), v1(σ
∗) = δ · w(p1) and

v2(σ
∗) = δ · w(1 − p1). As argued before, under the optimal PPE, v1(σ

∗) = v2(σ
∗). Since

w(p) is decreasing in p and since δ · w(p1) = δ · w(1− p1) we have p1 = 1
2
, as desired.

We now study some properties of the optimal PPE σ∗. Since Phase 2 of σ∗ has been

thoroughly analyzed in Section 3.4, in this section we focus on Phase 1 of σ∗. Recall that

both agents adhere in Phase 1.

Proposition 10. In Phase 1 of σ∗ (i) the agent who is inspected (and found adhering) faces

lower inspection probability in the next period, (ii) the continuation payoff of the inspected

agent increases, and the continuation payoff of the uninspected agent decreases, and (iii) the

inspection probability for each agent is in ( c
1+c

, 1
1+c

).

Proof. Fix a history in Phase 1 of σ∗ with length t−2 where no violation has been detected.

Denote by pt−1i the inspection probability agent i faces in period t − 1 under this history.

If agent i is inspected in period t − 1 and is found adhering, his continuation payoff is

f(pt−1i ). If f(pt−1i ) ≥ 1−c2
1+c−δ (or equivalently, pt−1i ≤ f−1( 1−c2

1+c−δ )), then agent i in period t is

inspected with probability c
1+c

. As argued before, c
1+c
≤ w−1(x

δ
) for every x ∈ (0, 1−c2

1+c−δ ),

hence by Proposition 8(a), c
1+c
≤ pt−1i , as desired. If f(pt−1i ) < 1−c2

1+c−δ (or equivalently,

pt−1i > f−1( 1−c2
1+c−δ )), then by Proposition 8(a), agent i in period t is inspected with probability

pti = w−1
(
f(pt−1

i )

δ

)
. It is left to verify that pti < pt−1i .

Denote by z agent i’s payoff if he adheres in period t− 1. By Eq. (21),

z = δ ·
(
pt−1i · f(pt−1i ) + (1− pt−1i ) · g

(
f(1− pt−1i )

))
. (59)

By Eq. (19), we have f(pt−1i ) ≥ g
(
f(1 − pt−1i )

)
. By Eq. (59) and since δ < 1 we have

f(pt−1i ) > z. By Proposition 8(a), in period t − 1 agent i is inspected with probability

pt−1i = w−1
(
z
δ

)
. Since w−1 is a decreasing function, we have w−1

(
f(pt−1

i )

δ

)
< w−1

(
z
δ

)
. That

is, pti < pt−1i , and Part (i) follows.

We now turn to prove Part (ii). Following the notation of Figure 7, it is sufficient to

prove that for every x ∈ (0, 1−c2
1+c−δ ): (a) f(p1) > x, (b) g

(
f(1−p1)

)
< x, (c) g (f(p1)) < g(x),

and (d) f(1− p1) > g(x).

As mentioned above, since f(p1) ≥ g
(
f(1 − p1)

)
and since δ < 1, by Eq. (20) we have

f(p1) > x. A similar argument shows that f(1 − p1) > g(x) and this proves Parts (a)
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and (d) of the claim. Now suppose that g
(
f(1 − p1)

)
≥ x. Then by Proposition 7(i,v)

f(1 − p1) = g
(
g
(
f(1 − p1)

))
≤ g(x), contradicting Part (d). Hence g

(
f(1 − p1)

)
< x and

Part (b) follows.19 Part (c) follows from a similar argument.

Finally, we prove Part (iii). By construction, in every period in Phase 1, the expected

payoffs of the two agents are both positive. Denote by vt1 and vt2 the payoffs of Agent 1 and

Agent 2, respectively, at a certain period t in Phase 1. Since vt1 = δw(pt1) and vt2 = δw(pt2) (see

Eqs. (20)–(21)), we have w(pt1) > 0 and w(pt2) > 0. Since w(p) is decreasing in p and since

w( 1
1+c

) = 0, we have pt1 <
1

1+c
and pt2 <

1
1+c

. Since pt1 = 1−pt2, we have pt1, p
t
2 ∈ ( c

1+c
, 1
1+c

).

Finally, we take care of the histories that connect the two Phases. When we reach

a finite public history where the payoff of one of the agents, say Agent 1, is leaving the

range (0, 1−c2
1+c−δ ), that is, v̂1 ≥ 1−c2

1+c−δ , then by the construction of the continuation payoffs

v̂2 = g(v̂1) = 0. If v̂1 ≤ 1
1−δ , then the payoffs (v1 = v̂1, v2 = 0) can be implemented by a PPE

following the inspection strategy described in Section 3.4. We next prove that v̂1 ≤ 1
1−δ must

hold. That is, f
(
w−1(x

δ
)
)
≤ 1

1−δ for every x ∈ (0, 1−c2
1+c−δ ). Indeed, since 1−c2

1+c−δ = δ · w( c
1+c

)

and since w is decreasing in p for p ∈ [0, 1
1+c

], we have w−1(x
δ
) ≥ w−1( 1−c2

1+c−δ ·
1
δ
) = c

1+c
for

every x ≤ 1−c2
1+c−δ . Hence f

(
w−1(x

δ
)
)
≤ f( c

1+c
). Since f( c

1+c
) ≤ 1

1−δ by Assumption 2, we have

f
(
w−1(x

δ
)
)
≤ 1

1−δ , as desired.

19Note that the inequality in Part (b) is strict, hence it does not follow directly from Part (d) and the fact
that g is non-increasing.
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